高级检索

一类球型区域上变系数反向热传导问题

耿肖肖, 程浩. 一类球型区域上变系数反向热传导问题[J]. 应用数学和力学, 2021, 42(7): 723-734. doi: 10.21656/1000-0887.410297
引用本文: 耿肖肖, 程浩. 一类球型区域上变系数反向热传导问题[J]. 应用数学和力学, 2021, 42(7): 723-734. doi: 10.21656/1000-0887.410297
GENG Xiaoxiao, CHENG Hao. The Backward Heat Conduction Problem With Variable Coefficients in a Spherical Domain[J]. Applied Mathematics and Mechanics, 2021, 42(7): 723-734. doi: 10.21656/1000-0887.410297
Citation: GENG Xiaoxiao, CHENG Hao. The Backward Heat Conduction Problem With Variable Coefficients in a Spherical Domain[J]. Applied Mathematics and Mechanics, 2021, 42(7): 723-734. doi: 10.21656/1000-0887.410297

一类球型区域上变系数反向热传导问题

  • 基金项目:

    江苏省研究生科研与实践创新计划项目(KYCX20_1921)

    国家自然科学基金(11426117)

详细信息
    作者简介:

    耿肖肖(1995—),女,硕士生(E-mail: 2289591428@qq.com);程浩(1983—),男,副教授,硕士生导师(通讯作者. E-mail: chenghao@jiangnan.edu.cn).

    通讯作者: 程浩(1983—),男,副教授,硕士生导师(通讯作者. E-mail: chenghao@jiangnan.edu.cn).
  • 中图分类号: O241.8

The Backward Heat Conduction Problem With Variable Coefficients in a Spherical Domain

  • Fund Project: The National Natural Science Foundation of China(11426117)
More Information
  • 考虑了一类球型区域上变系数反向热传导问题.这个问题是不适定的,即问题的解(若存在)并不连续依赖于测量数据.构造了投影迭代正则化方法,得到了该反问题的正则近似解,同时给出了在先验和后验参数选取规则下精确解与正则近似解之间的收敛性误差估计.最后,通过数值结果验证了该方法的有效性.
  • 加载中
  • [2]WEN J, YAMAMOTO M, WEI T. Simultaneous determination of a time-dependent heat source and the initial temperature in an inverse heat conduction problem[J]. Inverse Problems in Science and Engineering,2013,21(3): 485-499.

    ISAKOV V. Inverse Problems for Partial Differential Equations[M]. New York: Springer-Verlag, 1998.

    [3]JOURHMANE M, MERA N S. An iterative algorithm for the backward heat conduction problem based on variable relaxation factors[J]. Inverse Problems in Engineering,2002,10(4): 293-308.

    [4] LIU J J, WANG B X. Solving the backward heat conduction problem by homotopy analysis method[J]. Applied Numerical Mathematics,2018,128: 84-97.

    [5]XIONG X T, FU C L, QIAN Z. Two numerical methods for solving a backward heat conduction problem[J]. Applied Mathematics and Computation,2006,179(1): 370-377.

    [6] WANG Z W, QIU S F, RUAN Z S, et al. A regularized optimization method for identifying the space-dependent source and the initial value simultaneously in a parabolic equation[J]. Computers & Mathematics With Applications,2014,67(7): 1345-1357.

    [7]FU C L, XIONG X T, QIAN Z. Fourier regularization for a backward heat equation[J]. Journal of Mathematical Analysis & Applications,2007,331(1): 472-480.

    [8] CHENG W, FU C L. A modified Tikhonov regularization method for an axisymmmetric backward heat equation[J]. Acta Mathematica Sinica,2010,26(11): 2157-2164.

    [9]CHENG W, MA Y J, FU C L. A regularization method for solving the radially symmetric backward heat conduction problem[J]. Applied Mathematics Letters,2014,30: 38-43.

    [10]THOMAS M D A, BAMFORTH P B. Modelling chloride diffusion in concrete: effect of fly ash and slag[J]. Cement & Concrete Research,1999,29(4): 487-495.

    [11]TUAN N H, QUAN P H, TRONG D D, et al. On a backward heat problem with time-dependent coefficient: regularization and error estimates[J]. Applied Mathematics and Computation,2013,219(11): 6066-6073.

    [12]TUAN N H, HOA N V. Determination temperature of a backward heat equation with time-dependent coefficients[J]. Mathematica Slovaca,2012, 62(5): 937-948.

    [13]TRIET L M, QUAN P H, TRONG D D, et al. A backward parabolic equation with a time-dependent coefficient: regularization and error estimates[J]. Journal of Computational and Applied Mathematics,2013,237(1): 432-441.

    [14]QUAN P H, TRIET L M, TRONG D D, et al. A regularization of the backward problem for nonlinear parabolic equation with time-dependent coefficient[J]. International Journal of Mathematics and Mathematical Sciences,2012,109: 1-20.

    [15]ZHANG H W, ZHANG X J. Iterative method based on the truncated technique for backward heat conduction problem with variable coefficient[J]. Open Access Library Journal,2015,2(4): 1-11.

    [16]WANG J G, WEI T. An iterative method for backward time-fractional diffusion problem[J]. Numerical Methods for Partial Differential Equations,2014,30(6): 2029-2041.

    [17]DENG Y J, LIU Z H. Iteration methods on sideways parabolic equations[J]. Inverse Problem,2009,25(9): 095004.

    [18]WANG Z X, GUO D R. Introduction to Special Function[M]. Beijing: Peking University Press, 2000.

    [19]ABRAMOWITZ M. Handbook of Mathematical Functions: With Formulas, Graphs and Mathematical Tables[M]. New York: Dover Publications Inc, 1965.

    [20]柳重堪. 正交函数及其应用[M]. 北京: 国防工业出版社, 1982.(LIU Zhongkan. Orthogonal Function and its Application[M]. Beijing: National Defense Industry Press, 1982.(in Chinese))

    [21]NEGGAL B, BOUSSETIAL N, REBBANI F. Projected Tikhonov regularization method for Fredholm integral equations of the first kind[J]. Journal of Inequalities and Applications,2016,2016: 195. DOI: 10.1186/s13660-016-1137-6.

    [22]TAUTENHAHN U. Optimality for ill-posed problems under general source conditions[J]. Numerical Functional Analysis and Optimization,1998,19: 377-398.

  • 加载中
计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2020-09-29

目录