高级检索

民机弹射降落伞离机充气过程和安全分析

张延泰, 孙建红, 侯斌, 等. 民机弹射降落伞离机充气过程和安全分析[J]. 空气动力学学报, 2022, 40(2): 79−87. doi: 10.7638/kqdlxxb-2021.0010
引用本文: 张延泰, 孙建红, 侯斌, 等. 民机弹射降落伞离机充气过程和安全分析[J]. 空气动力学学报, 2022, 40(2): 79−87 . doi: 10.7638/kqdlxxb-2021.0010
ZHANG Y T, SUN J H, HOU B, et al. The inflation process and safety analyses of a parachute ejected from civil aircrafts[J]. Acta Aerodynamica Sinica, 2022, 40(2): 79−87. doi: 10.7638/kqdlxxb-2021.0010
Citation: ZHANG Y T, SUN J H, HOU B, et al. The inflation process and safety analyses of a parachute ejected from civil aircrafts[J]. Acta Aerodynamica Sinica, 2022, 40(2): 79−87 . doi: 10.7638/kqdlxxb-2021.0010

民机弹射降落伞离机充气过程和安全分析

  • 基金项目:
    江苏高校优势学科建设工程资助项目
详细信息
    作者简介:

    张延泰(1990-),男,天津人,博士研究生,研究方向:飞行器安全救生技术. E-mail:zhangyantai@nuaa.edu.cn

    通讯作者: 孙建红*(1968-),男,教授,研究方向:飞行器环境控制与生命保障技术,飞行器设计,适航技术与管理. E-mail:jhsun@nuaa.edu.cn
  • 中图分类号: V244.2

The inflation process and safety analyses of a parachute ejected from civil aircrafts

More Information
    Corresponding author: Jianhong SUN, E-mail: jhsun@nuaa.edu.cn
  • 当降落伞牵引小质量负荷(应急数据记录系统)从大型民用飞机机身下方弹射离机时,不同于弹体等刚性物体,柔性伞衣充气过程中剐蹭机身等安全隐患更大。为了研究弹射降落伞离机充气过程气动特性和运动轨迹,采用任意拉格朗日-欧拉(arbitrary Lagrange Euler, ALE)方法,对不同来流速度和角度条件下的降落伞开伞过程、气动特性和流场特性进行了数值模拟,分析了来流速度和角度对伞衣充气过程的影响。结果表明:当伞衣贴近或挤压机身时,伞衣侧面剪切层和近尾迹区中的涡运动都会受到机身影响,但降落伞不会完全失效,这时伞衣投影面积相对较小,充气过程的动载峰值变小。同时,在 40~160 m/s来流速度、临界来流迎角下,给出了降落伞可安全弹射离机的来流条件,为分离式飞机应急记录跟踪系统设计提供了理论支持。

  • 加载中
  • 图 1  折叠后的降落伞网格

    Figure 1.  The folded parachute mesh

    图 2  试验和数值模拟中的开伞动载

    Figure 2.  The parachute opening loads in experiments and numerical simulation

    图 3  机身与降落伞模型示意图

    Figure 3.  Schematic model of the fuselage and parachute

    图 4  机身对称面局部网格

    Figure 4.  The computational mesh at the symmetrical plane

    图 5  降落伞与机身尾部相对位置示意图

    Figure 5.  Schematic diagram of the relative position between a parachute and a fuselage tail

    图 6  动载峰值时刻伞衣与机身的距离

    Figure 6.  The distance between a parachute and a fuselage when the opening load reaches its maximum

    图 7  动载峰值时刻伞衣对称面的压力云图,等值线为流向速度

    Figure 7.  Flow fields at the parachute symmetrical plane (Shade and line contours denote pressure and streamwise velocity, respectively)

    图 8  动载峰值时刻伞衣对称面的Lamb矢量散度云图

    Figure 8.  Divergence of the Lamb vector at the parachute symmetrical plane

    图 9  伞衣对称面的涡量和涡量动力学方程中前三项的幅值(${U_\infty } = 160\;{\rm{m/s}},{\rm{ }}\alpha =30^\circ$)

    Figure 9.  The magnitude of vorticity and the first three terms in the vorticity dynamics equation at the parachute symmetrical plane (${U_\infty } = 160\;{\rm{m/s}},{\rm{ }}\alpha =30^\circ$)

    图 11  伞衣对称面的涡量和涡量动力学方程中前三项的幅值(${U_\infty } = 100\;{\rm{m/s}},{\rm{ }}\alpha =0^\circ$)

    Figure 11.  The magnitude of vorticity and the first three terms in the vorticity dynamics equation at the parachute symmetrical plane (${U_\infty } = 100\;{\rm{m/s}},{\rm{ }}\alpha =0^\circ$)

    图 10  伞衣对称面的涡量和涡量动力学方程中前三项的幅值(${U_\infty } = 100\;{\rm{m/s}},{\rm{ }}\alpha =30^\circ$)

    Figure 10.  The magnitude of vorticity and the first three terms in the vorticity dynamics equation at the parachute symmetrical plane (${U_\infty } = 100\;{\rm{m/s}},{\rm{ }}\alpha =30^\circ$)

    图 12  伞衣充气过程中的动载与投影面积(${U_\infty } = 100\;{\rm{m/s}}$)

    Figure 12.  The opening load and projected area during the parachute inflation process (${U_\infty } = 100\;{\rm{m/s}}$)

    图 13  伞衣在充气过程中的外形变化(${U_\infty } = 100\;{\rm{m/s}},{\rm{ }}\alpha {\rm{ = }}30^\circ$)

    Figure 13.  The canopy deformation during the parachute inflation process (${U_\infty } = 100\;{\rm{m/s}},{\rm{ }}\alpha {\rm{ = }}30^\circ$)

    图 14  不同来流速度和弹射速度下,伞衣在充气过程中的外形变化

    Figure 14.  The canopy deformation during the parachute inflation process at different free-stream velocities and eject velocities

    图 15  伞衣充气过程中的动载幅值

    Figure 15.  The opening load during the parachute inflation process

    图 16  不同来流速度下的临界迎角

    Figure 16.  Critical angle of attack at different inflow velocities

  • [1]

    YE W, SUN J H. Emergency mechanical and communication systems and methods for aircraft: US9440749[P]. 2016-09-13.

    [2]

    YE W, SUN J H. Emergency mechanical and communication systems and methods for aircraft: US9452844[P]. 2016-09-27.

    [3]

    YE W, SUN J H. Emergency mechanical and communication systems and methods for aircraft: US9771160[P]. 2017-09-26.

    [4]

    张延泰, 孙建红, 侯斌, 王一波. 分离式飞机应急记录跟踪系统设计与试验[J]. 北京航空航天大学学报(已录用).

    ZHANG Y T, SUN J H, HOU B, WANG Y B. Design and test of ejection flight data recording and emergency tracking system[J]. Journal of Beijing University of Aeronautics and Astronautics(in press).

    [5]

    刘洋, 周星. 民用飞机试飞员空中应急离机轨迹风洞实验研究[J]. 实验流体力学, 2015, 29(6): 54-58. doi: 10.11729/syltlx20140066

    LIU Y, ZHOU X. Investigation of flight test crew aerial emergency egress trajectory from civil aircraft in low speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(6): 54-58. (in Chinese)DOI: 10.11729/syltlx20140066[万方].

    [6]

    刘晓宇, 桑为民, 鲁天, 等. 人员离机轨迹数值模拟及快速预测研究[J]. 航空工程进展, 2014, 5(2): 220-226. doi: 10.3969/j.issn.1674-8190.2014.02.015

    LIU X Y, SANG W M, LU T, et al. Numerical simulation and quick prediction of men's separation trajectory[J]. Advances in Aeronautical Science and Engineering, 2014, 5(2): 220-226. (in Chinese)DOI: 10.3969/j.issn.1674-8190.2014.02.015[万方].

    [7]

    BERGMANN A, LOESER T. Capabilities of Deployment Tests at DNW-NWB[C]//Meeting paper for US Defense Technical Information Center. 2006.

    [8]

    SCHADE N, GEISBAUER S, SCHMIDT H, et al. Experimental and numerical investigation of the flow topology during airdrop operations[C]//21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Dublin, Ireland. Reston, Virigina: AIAA, 2011: 2565. doi: 10.2514/6.2011-2565

    [9]

    ROOSENBOOM E W M, SCHROEDER A, GEISLER R, et al. Experimental investigation of the flow field topology for several cargo drop configurations[C]//28th Aerodynamic Measurement Technology, Ground Testing, and Flight Testing Conference, New Orleans, Louisiana. Reston, Virginia: AIAA, 2012. doi: 10.2514/6.2012-3198

    [10]

    GEISBAUER S, BIER N, KIRZ J, et al. Validation of the flow topology around several airdrop cargo configurations at static conditions[C]//31st AIAA Applied Aerodynamics Conference, San Diego, CA. Reston, Virginia: AIAA, 2013: 3155. doi: 10.2514/6.2013-3155

    [11]

    TEZDUYAR T, OSAWA Y. The multi-domain method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 191(6-7): 705-716.DOI: 10.1016/S0045-7825(01)00310-3[LinkOut].

    [12]

    SERRANO M, LEIGH E, JOHNSON W, et al. Computational aerodynamics of the C-130 in airdrop configurations[C]//41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virigina: AIAA, 2003: 229. doi: 10.2514/6.2003-229

    [13]

    GHOREYSHI M, ROSE T, LARSEN E, et al. Dynamic simulation and analysis of personnel airborne exits[C]//AIAA AVIATION 2020 FORUM, VIRTUAL EVENT. Reston, Virginia: AIAA, 2020. doi:10.2514/6.2020-2704

    [14]

    BERGERON K, GHOREYSHI M, LARSEN E, et al. Near-body/Cartesian off-body simulations for C-17 and extraction parachute[C]//AIAA AVIATION 2020 FORUM, VIRTUAL EVENT. Reston, Virginia: AIAA, 2020. doi: 10.2514/6.2020-2712

    [15]

    HEINRICH H G, NOREEN R A. Analysis of parachute opening dynamics with supporting wind-tunnel experiments[J]. Journal of Aircraft, 1970, 7(4): 341-347.DOI: 10.2514/3.44175[LinkOut].

    [16]

    喻东明, 李丰雄. 随机变量总体均值在降落伞技术中的应用[J]. 航空学报, 1999, 20(S1): 3-5.

    YU D M, LI F X. Application of population mean of random variables to parachute technology[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(S1): 3-5. (in Chinese)[知网].

    [17]

    JOHARI H, DESABRAIS K J. Vortex shedding in the near wake of a parachute canopy[J]. Journal of Fluid Mechanics, 2005, 536: 185. doi: 10.1017/S0022112005004490

    [18]

    HAMMAN C W, KLEWICKI J C, KIRBY R M. On the Lamb vector divergence in Navier–Stokes flows[J]. Journal of Fluid Mechanics, 2008, 610: 261-284. doi: 10.1017/S0022112008002760

    [19]

    FANG M, SUN J H, ZHANG T, HOU B, ZHANG Y T. Flow characteristics of double-cruciform parachute at inflating and inflated conditions[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2018, 35(6): 992-999.

    [20]

    许常悦, 郑静, 王哲, 王彬. 方柱跨声速流动中的剪切层和尾迹特性[J], 上海交通大学学报, 2020.

    XU C Y, ZHENG J, WANG Z, WANG B. The shear layer and wake characteristics of square cylinder in the transonic flow[J]. Journal of Shanghai Jiaotong University, 2020.

    [21]

    许常悦, 王从磊, 孙建红. 圆柱跨声速绕流中的激波/湍流相互作用大涡模拟研究[J]. 空气动力学学报, 2012, 30(1): 22-27, 51.

    XU C Y, WANG C L, SUN J H. Large eddy simulation of shock-wave/turbulence interaction in the transonic flow over a circular cylinder[J]. Acta Aerodynamica Sinica, 2012, 30(1): 22-27, 51. (in Chinese)[知网].

    [22]

    庄礼贤, 尹协远, 马晖扬. 流体力学[M]. 2版. 合肥: 中国科学技术大学出版社, 2009.

    ZHUANG L X, YIN X Y, MA H Y. Fluid mechanics[M]. Hefei: University of Science and Technology of China Press, 2009. (in Chinese)

    [23]

    许常悦. 圆柱可压缩绕流及其流动控制的大涡模拟研究[D]. 合肥: 中国科学技术大学, 2009.

    XU C Y. Large eddy simulation of the compressible flow past a circular cylinder and its flow control[D]. Hefei: University of Science and Technology of China, 2009. (in Chinese).

    [24]

    TSUTSUI T. Flow around a sphere in a plane turbulent boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6-7): 779-792.DOI: 10.1016/j.jweia.2007.06.031[LinkOut].

    [25]

    刘天宇, 夏洁, 钱艳平. 大型飞机迎角限制器设计与飞行品质评估[J]. 系统仿真学报, 2011, 23(S1): 215-218. doi: 10.16182/j.cnki.joss.2011.s1.016

    LIU T Y, XIA J, QIAN Y P. Design of limiters for attack angle of large aircraft and flying qualities evaluation[J]. Journal of System Simulation, 2011, 23(S1): 215-218. (in Chinese)DOI: 10.16182/j.cnki.joss.2011.s1.016[知网].

    [26]

    Boeing 737-800 Aircraft Maintenance Manual[M]. Seatle, Washington, USA: Boeing Comercial Airplanes Group, 1998.

  • 加载中

(17)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2021-01-26
修回日期:  2021-03-22
录用日期:  2021-03-23
网络出版日期:  2021-07-09
刊出日期:  2022-04-25

目录