The inflation process and safety analyses of a parachute ejected from civil aircrafts
-
摘要:
当降落伞牵引小质量负荷(应急数据记录系统)从大型民用飞机机身下方弹射离机时,不同于弹体等刚性物体,柔性伞衣充气过程中剐蹭机身等安全隐患更大。为了研究弹射降落伞离机充气过程气动特性和运动轨迹,采用任意拉格朗日-欧拉(arbitrary Lagrange Euler, ALE)方法,对不同来流速度和角度条件下的降落伞开伞过程、气动特性和流场特性进行了数值模拟,分析了来流速度和角度对伞衣充气过程的影响。结果表明:当伞衣贴近或挤压机身时,伞衣侧面剪切层和近尾迹区中的涡运动都会受到机身影响,但降落伞不会完全失效,这时伞衣投影面积相对较小,充气过程的动载峰值变小。同时,在 40~160 m/s来流速度、临界来流迎角下,给出了降落伞可安全弹射离机的来流条件,为分离式飞机应急记录跟踪系统设计提供了理论支持。
Abstract:The ejectable emergency flight data recorder equipped with a parachute show promising prospects in aircraft safety and rescue. However, compared to rigid objects, the flexible canopy of an ejected parachute during its inflation process is more likely to collide with the fuselage, which brings potential safety hazards. Therefore, the aerodynamic characteristics and trajectories of a parachute ejected from a civil aircraft are studied numerically by the Arbitrary Lagrange Euler method (ALE). The effects of the free-stream conditions, i.e., the velocity and angle of attack on the parachute inflation process, aerodynamic characteristics, and flow fields are analyzed. Results show that when the parachute is close to the fuselage, the shear layers and vortical motions around the canopy are modified by the fuselage. Nevertheless, the parachute does not fail completely. Meanwhile, the projected area and opening load of the canopy are relatively small. The critical angle of attack of at the free-stream with velocity bewteen 40 m/s and 160 m/s is obtained. The safety condition for ejections is given at last. This work provides a theoretical support for the design of ejectable flight data recording and emergency tracking systems.
-
Key words:
- aircraft safety and rescue /
- parachute /
- finite mass inflation /
- numerical simulation /
- safety analyses
-
-
-
[1] YE W, SUN J H. Emergency mechanical and communication systems and methods for aircraft: US9440749[P]. 2016-09-13.
[2] YE W, SUN J H. Emergency mechanical and communication systems and methods for aircraft: US9452844[P]. 2016-09-27.
[3] YE W, SUN J H. Emergency mechanical and communication systems and methods for aircraft: US9771160[P]. 2017-09-26.
[4] 张延泰, 孙建红, 侯斌, 王一波. 分离式飞机应急记录跟踪系统设计与试验[J]. 北京航空航天大学学报(已录用).
ZHANG Y T, SUN J H, HOU B, WANG Y B. Design and test of ejection flight data recording and emergency tracking system[J]. Journal of Beijing University of Aeronautics and Astronautics(in press).
[5] 刘洋, 周星. 民用飞机试飞员空中应急离机轨迹风洞实验研究[J]. 实验流体力学, 2015, 29(6): 54-58. doi: 10.11729/syltlx20140066
LIU Y, ZHOU X. Investigation of flight test crew aerial emergency egress trajectory from civil aircraft in low speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(6): 54-58. (in Chinese)DOI: 10.11729/syltlx20140066[万方].
[6] 刘晓宇, 桑为民, 鲁天, 等. 人员离机轨迹数值模拟及快速预测研究[J]. 航空工程进展, 2014, 5(2): 220-226. doi: 10.3969/j.issn.1674-8190.2014.02.015
LIU X Y, SANG W M, LU T, et al. Numerical simulation and quick prediction of men's separation trajectory[J]. Advances in Aeronautical Science and Engineering, 2014, 5(2): 220-226. (in Chinese)DOI: 10.3969/j.issn.1674-8190.2014.02.015[万方].
[7] BERGMANN A, LOESER T. Capabilities of Deployment Tests at DNW-NWB[C]//Meeting paper for US Defense Technical Information Center. 2006.
[8] SCHADE N, GEISBAUER S, SCHMIDT H, et al. Experimental and numerical investigation of the flow topology during airdrop operations[C]//21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Dublin, Ireland. Reston, Virigina: AIAA, 2011: 2565. doi: 10.2514/6.2011-2565
[9] ROOSENBOOM E W M, SCHROEDER A, GEISLER R, et al. Experimental investigation of the flow field topology for several cargo drop configurations[C]//28th Aerodynamic Measurement Technology, Ground Testing, and Flight Testing Conference, New Orleans, Louisiana. Reston, Virginia: AIAA, 2012. doi: 10.2514/6.2012-3198
[10] GEISBAUER S, BIER N, KIRZ J, et al. Validation of the flow topology around several airdrop cargo configurations at static conditions[C]//31st AIAA Applied Aerodynamics Conference, San Diego, CA. Reston, Virginia: AIAA, 2013: 3155. doi: 10.2514/6.2013-3155
[11] TEZDUYAR T, OSAWA Y. The multi-domain method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 191(6-7): 705-716.DOI: 10.1016/S0045-7825(01)00310-3[LinkOut].
[12] SERRANO M, LEIGH E, JOHNSON W, et al. Computational aerodynamics of the C-130 in airdrop configurations[C]//41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virigina: AIAA, 2003: 229. doi: 10.2514/6.2003-229
[13] GHOREYSHI M, ROSE T, LARSEN E, et al. Dynamic simulation and analysis of personnel airborne exits[C]//AIAA AVIATION 2020 FORUM, VIRTUAL EVENT. Reston, Virginia: AIAA, 2020. doi:10.2514/6.2020-2704
[14] BERGERON K, GHOREYSHI M, LARSEN E, et al. Near-body/Cartesian off-body simulations for C-17 and extraction parachute[C]//AIAA AVIATION 2020 FORUM, VIRTUAL EVENT. Reston, Virginia: AIAA, 2020. doi: 10.2514/6.2020-2712
[15] HEINRICH H G, NOREEN R A. Analysis of parachute opening dynamics with supporting wind-tunnel experiments[J]. Journal of Aircraft, 1970, 7(4): 341-347.DOI: 10.2514/3.44175[LinkOut].
[16] 喻东明, 李丰雄. 随机变量总体均值在降落伞技术中的应用[J]. 航空学报, 1999, 20(S1): 3-5.
YU D M, LI F X. Application of population mean of random variables to parachute technology[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(S1): 3-5. (in Chinese)[知网].
[17] JOHARI H, DESABRAIS K J. Vortex shedding in the near wake of a parachute canopy[J]. Journal of Fluid Mechanics, 2005, 536: 185. doi: 10.1017/S0022112005004490
[18] HAMMAN C W, KLEWICKI J C, KIRBY R M. On the Lamb vector divergence in Navier–Stokes flows[J]. Journal of Fluid Mechanics, 2008, 610: 261-284. doi: 10.1017/S0022112008002760
[19] FANG M, SUN J H, ZHANG T, HOU B, ZHANG Y T. Flow characteristics of double-cruciform parachute at inflating and inflated conditions[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2018, 35(6): 992-999.
[20] 许常悦, 郑静, 王哲, 王彬. 方柱跨声速流动中的剪切层和尾迹特性[J], 上海交通大学学报, 2020.
XU C Y, ZHENG J, WANG Z, WANG B. The shear layer and wake characteristics of square cylinder in the transonic flow[J]. Journal of Shanghai Jiaotong University, 2020.
[21] 许常悦, 王从磊, 孙建红. 圆柱跨声速绕流中的激波/湍流相互作用大涡模拟研究[J]. 空气动力学学报, 2012, 30(1): 22-27, 51.
XU C Y, WANG C L, SUN J H. Large eddy simulation of shock-wave/turbulence interaction in the transonic flow over a circular cylinder[J]. Acta Aerodynamica Sinica, 2012, 30(1): 22-27, 51. (in Chinese)[知网].
[22] 庄礼贤, 尹协远, 马晖扬. 流体力学[M]. 2版. 合肥: 中国科学技术大学出版社, 2009.
ZHUANG L X, YIN X Y, MA H Y. Fluid mechanics[M]. Hefei: University of Science and Technology of China Press, 2009. (in Chinese)
[23] 许常悦. 圆柱可压缩绕流及其流动控制的大涡模拟研究[D]. 合肥: 中国科学技术大学, 2009.
XU C Y. Large eddy simulation of the compressible flow past a circular cylinder and its flow control[D]. Hefei: University of Science and Technology of China, 2009. (in Chinese).
[24] TSUTSUI T. Flow around a sphere in a plane turbulent boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6-7): 779-792.DOI: 10.1016/j.jweia.2007.06.031[LinkOut].
[25] 刘天宇, 夏洁, 钱艳平. 大型飞机迎角限制器设计与飞行品质评估[J]. 系统仿真学报, 2011, 23(S1): 215-218. doi: 10.16182/j.cnki.joss.2011.s1.016
LIU T Y, XIA J, QIAN Y P. Design of limiters for attack angle of large aircraft and flying qualities evaluation[J]. Journal of System Simulation, 2011, 23(S1): 215-218. (in Chinese)DOI: 10.16182/j.cnki.joss.2011.s1.016[知网].
[26] Boeing 737-800 Aircraft Maintenance Manual[M]. Seatle, Washington, USA: Boeing Comercial Airplanes Group, 1998.
-