Structural damage identification based on LSTM neural networks under ambient temperature variations
-
摘要: 环境温度的改变会引起模态参数的变化,其变化程度会掩盖或部分掩盖损伤引起的变化量,导致结构健康监测系统发出假阳性或假阴性的误判,因此,消除温度效应是提高损伤识别精度的关键。本文基于LSTM神经网络提出了一种环境温度影响下识别结构损伤的方法。充分利用LSTM神经网络的非线性映射优势,建立多元温度-模态频率的相关模型,在此基础上采用数据标准化方法消除温度效应,并结合控制图判断模态频率异常变化以确定损伤状况。最后将所提方法在数值模型和实际桥梁中加以应用,结果表明,方法能够有效消除温度效应;结合控制图能识别损伤时刻,并具有一定的抗噪性;在实桥数据分析中仍能表现出较好的损伤敏感性。Abstract: The change of ambient temperature will cause the change of modal parameters,and the degree of change will cover up or partially cover up the change caused by damage,resulting in the misjudgment of false positive or false negative issued by the structural health monitoring system.Therefore,eliminating the temperature effect is the key to improve the accuracy of damage identification.Based on LSTM neural network,this paper proposes a method to identify structural damage under the impact of ambient temperature.By making full use of the nonlinear mapping advantage of LSTM neural network,the correlation model of multivariate temperature and modal frequencies is established.On this basis,the data normalization method is used to eliminate the temperature effect,and the control chart is used to judge the abnormal change of modal frequencies to determine the damage condition.Finally,the proposed method is applied to a numerical model and an actual bridge.The results show that the method can effectively eliminate the temperature effect.Combined with the control chart method,it can identify the damage time and has a certain noise resistance.In the real bridge data analysis,it can still show good damage sensitivity.
-
[1] 李宏男,李东升.土木工程结构安全性评估、健康监测及诊断述评[J].地震工程与工程振动,2002, 22 (3):82-90.(LI Hong-nan,LI Dong-sheng.Safety assessment,health monitoring and damage diagnosis for structures in civil engineering[J].Earthquake Engineering and Engineering Dynamics,2002, 22 (3):82-90.(in Chinese))
[2] 李爱群,缪长青,李兆霞,等.润扬长江大桥结构健康监测系统研究[J].东南大学学报(自然科学版),2003, 33 (5):544-548.(LI Ai-qun,MIAO Chang-qing,LI Zhao-xia,et al.Health monitoring system for the Runyang Yangtse River Bridge[J].Journal of Southeast University(Natural Science Edition),2003, 33 (5):544-548.(in Chinese))
[3] 余 波,邱洪兴,王 浩,等.苏通大桥结构健康监测系统设计[J]. 地震工程与工程振动,2009, 29 (4):170-177. (YU Bo,QIU Hong-xing,WANG Hao,et al.Health monitoring system for Sutong Yangtze River Bridge[J].Journal of Earthquake Engineering and Engineering Vibration,2009, 29 (4):170-177.(in Chinese))
[4] Wong K Y.Instrumentation and health monitoring of cable-supported bridges[J].Structural Control and Health Monitoring,2004, 11 (2):91-124.
[5] Sohn H.Effects of environmental and operational variability on structural health monitoring[J].Philosophical Transactions of the Royal Society of London Series A,2007, 365 (1851):539-560.
[6] Xia Y,Hao H,Zanardo G,et al.Long term vibration monitoring of an RC slab:Temperature and humidity effect[J].Engineering Structures,2006, 28 (3):441-452.
[7] 杨 鸥,刘 洋,李 惠,等.时变环境与损伤耦合下桥梁结构频率及阻尼比的统计分析[J].计算力学学报,2010, 27 (3):457-463.(YANG Ou,LIU Yang,LI Hui,et al.Cable bridge modal parameter statistical analysis under the time varying environment coupled with damage[J].Chinese Journal of Computational Mechanics,2010, 27 (3):457-463.(in Chinese))
[8] Peeters B,de Roeck G.One-year monitoring of the Z24-Bridge:Environmental effects versus damage events[J].Earthquake Engineering & Structural Dynamics,2001, 30 (2):149-171.
[9] Maeck J,de Roeck G.Description of Z24 benchmark[J]. Mechanical Systems and Signal Processing,2003, 17 (1):127-131.
[10] 孙 君,李爱群,丁幼亮,等.润扬大桥悬索桥模态频率-温度的季节相关性研究及其应用[J].工程力学,2009, 26 (9):50-55.(SUN Jun,LI Ai-qun,DING You-liang,et al.Research on correlation of modal frequency and seasonal temperature of Runyang suspension bridge[J]. Engineering Mechanics,2009, 26 (9):50-55.(in Chinese))
[11] Kullaa J.Elimination of environmental influences from damage-sensitive features in a structural health monitoring system[A].Proceedings of the first European workshop on structural health monitoring[C].2002.
[12] Vanlanduit S,Parloo E,Cauberghe B,et al.A robust singular value decomposition for damage detection under changing operating conditions and structural uncertainties[J].Journal of Sound and Vibration,2005, 284 (3-5):1033-1050.
[13] Giraldo D F,Dyke S J,Caicedo J M.Damage detection accommodating varying environmental conditions[J].Structural Health Monitoring,2006, 5 (2):155-172.
[14] Basseville M,Bourquin F,Mevel L,et al.Handling the temperature effect in vibration monitoring:Two subspace-based analytical approaches[J].Journal of Engineering Mechanics,2010, 136 (3):367-378.
[15] Ni Y Q,Zhou H F,Ko J M.Generalization capability of neural network models for temperature-frequency correlation using monitoring data[J].Journal of Structural Engineering,2009, 135 (10):1290-1300.
[16] Zhou H F,Ni Y Q,Ko J M.Performance of neural networks for simulation and prediction of temperature-induced modal variability[A].Proceedings of SPIE-The International Society for Optical Enginee-ring[C].2005.
[17] 雷勇志,黄民水,顾箭峰,等.环境温度影响下基于支持向量机与强化飞蛾扑火优化算法的结构稀疏损伤识别[J].计算力学学报,2022, 39 (2):170-177.(LEI Yong-zhi,HUANG Min-shui,GU Jian-feng,et al.Structural sparse damage identification considering ambient temperature variations based on support vector machine and enhanced moth-flame optimization[J].Chinese Journal of Computational Mechanics,2022, 39 (2):170-177.(in Chinese))
[18] Farrar C,Sohn H,Worden K.Data Normalization:A Key for Structural Health Monitoring[R].Los Alamos National Lab.(LANL),2001.
[19] 闫翠平.基于深度学习的桥梁健康状态检测方法研究[D].北京交通大学,2020.(YAN Cui-ping.Research on Bridge Health Condition Detection Method based on Deep Learning[D].Beijing Jiaotong University,2020.(in Chinese))
[20] Hsu C,Chang C C,Lin C.A practical guide to support vector classification[EB/OL].Https://www.csic.ntu.edu.tw/cjlin/papers/guide/guide/pdf.2017-03-20.
[21] Dragomiretskiy K,Zosso D.Variational mode decomposition[J]. IEEE Transactions on Signal Processing,2014, 62 (3):531-544.
[22] 李宏坤,侯梦凡,唐道龙,等.基于POVMD和CAF的低转速齿轮箱故障诊断[J].振动、测试与诊断,2020, 40 (1):35-42,201.(LI Hong-kun,HOU Meng-fan,TANG Dao-long,et al.Low speed gearbox fault diagnosis based on POVMD and CAF[J].Journal of Vibration,Measurement & Diagnosis,2020, 40 (1):35-42,201.(in Chinese))
[23] Worden K,Cross E J,Antoniadou I,et al.A multire-solution approach to cointegration for enhanced SHM of structures under varying conditions-An exploratory study[J].Mechanical Systems and Signal Processing,2014, 47 (1-2):243-262.
[24] Chang Y S,Chiao H T,Abimannan S,et al.An LSTM-based aggregated model for air pollution forecasting[J]. Atmospheric Pollution Research,2020, 11 (8):1451-1463.
[25] He W Y,Ren W X,Zhu S Y.Damage detection of beam structures using quasi-static moving load induced displacement response[J].Engineering Structures,2017, 145:70-82.
[26] Zhou H F,Ni Y Q,Ko J M.Constructing input to neural networks for modeling temperature-caused modal variability:Mean temperatures,effective temperatures,and principal components of temperatures[J].Engineering Structures,2010, 32 (6):1747-1759.
[27] Zhou H F,Ni Y Q,Ko J M.Eliminating temperature effect in vibration-based structural damage detection[J]. Journal of Engineering Mechanics,2011, 137 (12):785-796.
计量
- 文章访问数: 176
- PDF下载数: 117
- 施引文献: 0