HYDROGEN CONCENTRATION DISTRIBUTION IN FLOW OF HYDROGEN BLENDED TO NATURAL GAS IN PIPELINE
-
摘要:
天然气掺氢是解决氢气产地与使用地不匹配,进而实现氢气大规模、远距离输送的主要方法。由于氢气的存在会导致在役天然气管道出现氢脆引起安全事故。所以,研究天然气掺氢管路中氢气组分、速度、聚集的规律分析十分必要。本文选用天然气和氢气两种工质,构建T型掺混管路模型和变径管路模型;并基于Fluent软件对T型掺混管路和10种变径掺混管路进行数值模拟研究。结果表明,对于T型掺混管路,在管长是管径35倍处内依然有明显分层,宽度占据1/3管径。对于变径掺混管路,发现变径越靠近掺混中心、直径越窄、高度越低越容易发生氢气富集,氢气摩尔分数最高达到50%~60%,易引起管道的氢脆。研究结果可对天然气掺氢在管道中流动的氢浓度分布和管道变径选取提供参考。
Abstract:Blending hydrogen into natural gas is the primary method to solve the mismatch between the origin and use of hydrogen and realize the large-scale and long-distance transportation for hydrogen. Hydrogen can lead to hydrogen embrittlement in natural gas pipelines and cause safety accidents. Therefore, it is necessary to investigate the regularity analysis of hydrogen composition, velocity, and accumulation in in-service natural gas pipelines. A T-type and a variable diameter type blending pipeline model have been constructed and researched for blending hydrogen in natural gas. The T-type results show that the pipe length of obvious layering and width are 35 times and 1/3 of pipe diameter, respectively. The results of variable diameter have been illustrated that the closer the blending center, the narrower of width and the lower of height with variable diameter can lead to hydrogen enrichment easily. Hydrogen embrittlement has been facile with a maximum hydrogen mole fraction of 50%~60% in blending nature gas pipelines. The results can provide a reference for the blending effect of natural gas with hydrogen and the selection of pipeline diameter.
-
-
表 1 网格无关性说明
Table 1. Grid independence specification
Type Grid feature Number of nodes Number of elements Number of iterations Hydrogen mole fraction at outlet/% T-type model sparse 51679 255311 300 4.56 moderate 99004 510457 268 4.68 dense 186225 991794 537 4.91 variable diameter model sparse 52755 260047 318 4.79 moderate 101075 519109 260 4.76 dense 189815 1007159 532 4.79 表 2 变径掺混管路几何参数及结果
Table 2. Geometric parameters and results of variable diameter type blending pipeline
NO. s/mm D/mm l/mm x(H2)/% 1 900 160 100 40~50 2 1000 160 100 25~30 3 2000 160 100 25~30 4 3000 160 100 15~20 5 3500 160 100 10~15 6 900 160 200 25~40 7 900 160 50 45~55 8 900 240 100 20~40 9 900 120 100 50~55 10 900 120 50 50~60 -
[1] Statistical review of world energy 2021 (70th edition). https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf
[2] IEA. The future of hydrogen. https://www.iea.org/reports/the-future-of-hydrogen
[3] 国家统计局. 中华人民共和国2021年国民经济和社会发展统计公报. http://www.gov.cn/xinwen/2022-02/28/content_5676015.htm
[4] 国家发展和改革委员会. 氢能产业发展中长期规划(2021—2035年). 2022-03-23. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202203/t20220323_1320038.html?code=&state=123
[5] 张鹏程, 胡龙, 张佳等. 中国西部地区开展天然气管道氢气掺输的思考. 国际石油经济, 2021, 29(9): 73-78 doi: 10.3969/j.issn.1004-7298.2021.09.011
Zhang Pengcheng, Hu Long, Zhang Jia, et al. Considerations on blending hydrogen into natural gas pipeline networks in western China. International Petroleum Economics, 2021, 29(9): 73-78 (in Chinese) doi: 10.3969/j.issn.1004-7298.2021.09.011
[6] 宋鹏飞, 单彤文, 李又武等. 天然气管道掺入氢气的影响及技术可行性分析. 现代化工, 2020, 40(7): 5-10 doi: 10.16606/j.cnki.issn0253-4320.2020.07.002
Song Pengfei, Shan Tongwen, Li Youwu, et al. Impact of hydrogen into natural gas grid and technical feasibility analysis. Modern Chemical Industry, 2020, 40(7): 5-10 (in Chinese) doi: 10.16606/j.cnki.issn0253-4320.2020.07.002
[7] 殷卓成, 杨高, 刘怀等. 氢能储运关键技术研究现状及前景分析. 现代化工, 2021, 41(11): 53-57 doi: 10.12361/2661-3670-03-11-27
Yin Zhuocheng, Yang Gao, Liu Huai, et al. Research status and prospect analysis of key technologies for hydrogen energy storage and transportation. Modern Chemical Industry, 2021, 41(11): 53-57 (in Chinese) doi: 10.12361/2661-3670-03-11-27
[8] 李敬法, 苏越, 张衡等. 掺氢天然气管道输送研究进展. 天然气工业, 2021, 41(4): 137-152 doi: 10.3787/j.issn.1000-0976.2021.04.015
Li Jingfa, Su Yue, Zhang Heng, et al. Research progresses on pipeline transportation of hydrogen-blended natural gas. Natural Gas Industry, 2021, 41(4): 137-152 (in Chinese) doi: 10.3787/j.issn.1000-0976.2021.04.015
[9] 刘翠伟, 裴业斌, 韩辉等. 氢能产业链及储运技术研究现状及发展趋势. 油气储运, 2022, 41(5): 498-514
Liu Cuiwei, Pei Yebin, Han Hui, et al. Research status and development trend of hydrogen energy industry chain and the storage and transportation technologies. Oil&Gas Storage and Transportation, 2022, 41(5): 498-514 (in Chinese)
[10] 王玮, 王秋岩, 邓海全等. 天然气管道输送混氢天然气的可行性. 天然气工业, 2020, 40(3): 130-136 doi: 10.3787/j.issn.1000-0976.2020.03.016
Wang Wei, Wang Qiuyan, Deng Haiquan, et al. Feasibility analysis on the transportation of hydrogen–natural gas mixtures in natural gas pipelines. Natural Gas Industry, 2020, 40(3): 130-136 (in Chinese) doi: 10.3787/j.issn.1000-0976.2020.03.016
[11] Zhao Y, Mcdonell V, Samuelsen S. Influence of hydrogen addition to pipeline natural gas on the combustion performance of a cooktop burner. International Journal of Hydrogen Energy, 2019, 44(23): 12239-12253 doi: 10.1016/j.ijhydene.2019.03.100
[12] Melaina MW, Antonia O, Penev M. Blending hydrogen into natural gas pipeline networks: a review of key issues. NREL/TP-5600-51995, 2013
[13] 张立业, 邓海涛, 孙桂军等. 天然气随动掺氢技术研究进展. 力学与实践, 2022, 44(3): 491-502
Zhang Liye, Deng Haitao, Sun Guijun, et al. Research progress of natural gas follow-up hydrogen mixing technology. Mechanics in Engineering, 2022, 44(3): 491-502 (in Chinese)
[14] 许未晴, 鲁仰辉, 孙晨等. 天然气掺氢输送系统氢脆研究进展. 油气储运, 2022. http://kns.cnki.net/kcms/detail/13.1093.te.20220321.1817.008.html
Xu Weiqing, Lu Yanghui, Sun Chen, et al. Hydrogen embrittlement in blending hydrogen into natural gas transportation system. Oil & Gas Storage and Transportation, 2022. http://kns.cnki.net/kcms/detail/13.1093.te.20220321.1817.008.html (in Chinese)
[15] Kong M, Feng S, Xia Q, et al. Investigation of mixing behavior of hydrogen blended to natural gas in gas network. Sustainability, 2021, 13(8): 4255 doi: 10.3390/su13084255
[16] 吴嫦. 天然气掺混氢气使用的可行性研究. [硕士论文]. 重庆: 重庆大学, 2018
Wu Chang. Feasibility study on blending hydrogen into natural gas distribution networks. [Master Thesis]. Chongqing: Chongqing university, 2018 (in Chinese)
[17] Tabkhi F, Azzaro-Pantel C, Piboouleau L, et al. A mathematical framework for modelling and evaluating natural gas pipeline networks under hydrogen injection. International Journal of Hydrogen Energy, 2008, 33(21): 6222-6231 doi: 10.1016/j.ijhydene.2008.07.103
[18] Guandalini G, Colbertaldo P, Campanari S. Dynamic modeling of natural gas quality within transport pipelines in presence of hydrogen injections. Applied Energy, 2017, 185: 1712-1723 doi: 10.1016/j.apenergy.2016.03.006
[19] Hafsi Z, Elaoud S, Akrout M, et al. Numerical approach for steady state analysis of hydrogen–natural gas mixtures flows in looped network. Arabian Journal for Science and Engineering, 2017, 42(5): 1941-1950 doi: 10.1007/s13369-016-2393-y
[20] Wiitkowski A, Rusin A, Majkut M, et al. Analysis of compression and transport of the methane/hydrogen mixture in existing natural gas pipelines. International Journal of Pressure Vessels and Piping, 2018, 166: 24-34 doi: 10.1016/j.ijpvp.2018.08.002
-