高级检索

天然气随动掺氢技术研究进展

张立业, 邓海涛, 孙桂军等. 天然气随动掺氢技术研究进展. 力学与实践, 2022, 44(4): 755-766. doi: 10.6052/1000-0879-22-056
引用本文: 张立业, 邓海涛, 孙桂军等. 天然气随动掺氢技术研究进展. 力学与实践, 2022, 44(4): 755-766. doi: 10.6052/1000-0879-22-056
Zhang Liye, Deng Haitao, Sun Guijun, et al. Research progress of natural gas follow-up hydrogen mixing technology. Mechanics in Engineering, 2022, 44(4): 755-766. doi: 10.6052/1000-0879-22-056
Citation: Zhang Liye, Deng Haitao, Sun Guijun, et al. Research progress of natural gas follow-up hydrogen mixing technology. Mechanics in Engineering, 2022, 44(4): 755-766 . doi: 10.6052/1000-0879-22-056

天然气随动掺氢技术研究进展

  • 基金项目:
    北京高校卓越青年科学家计划(BJJWZYJH01201910006021),国家自然科学基金(51875012),中国博士后科学基金(2021M701096)和河北省重点研发计划(20314601D)资助项目。
详细信息
    作者简介:

    张立业,高级工程师。E-mail: 13591953019@163.com

  • 中图分类号: TK91

RESEARCH PROGRESS OF NATURAL GAS FOLLOW-UP HYDROGEN MIXING TECHNOLOGY

  • 氢气是一种零排放的二次能源,是实现“双碳”目标的重要能源之一。采用在役天然气管道或管网输送掺氢天然气,是实现氢气大规模输送的有效方式。精确控制进入输送系统的掺氢比例对系统安全运行具有重要意义。本文介绍了电气式和机械式随动掺氢系统的结构与原理;分析了红外吸收型、热传导型、半导体型浓度传感器和相应的综合测量系统在掺氢比动态调整中的应用;重点评述了目前3个重要在役天然气掺氢示范项目中随动掺氢系统的组成和运行结果;基于工程实践经验展望了天然气掺氢技术的发展趋势。

  • 加载中
  • 图 1  天然气随动掺氢系统

    Figure 1.  System of natural gas follow-up hydrogen mixing

    图 2  电气式随动掺氢结构

    Figure 2.  Structure of gas mixer with electrical control

    图 3  浮子式气体随动掺混结构

    Figure 3.  Structure of gas mixer with floating ball

    图 4  柱塞式掺混结构

    Figure 4.  Structure of gas mixer with plunger

    图 5  文丘里式引射随动掺氢结构

    Figure 5.  Structure of gas mixer with Venturi ejection

    图 6  二进制掺混结构

    Figure 6.  Structure of gas mixer with binary

    图 7  红外吸收型气体流量传感器原理

    Figure 7.  Principle of gas flow sensor with infrared absorption

    图 8  热传导型气体传感器原理

    Figure 8.  Principle of gas flow sensor with heat conduction

    图 9  一个典型的半导体气体传感器

    Figure 9.  Principle of gas flow sensor with semiconductor

    图 10  实验测试系统装置[47]

    Figure 10.  Equipment in experiment and test system[47]

    图 11  NaturalHy概念图[49]

    Figure 11.  Concept map of NaturalHy[49]

    图 12  HyDeploy项目设计流程图[50]

    Figure 12.  Design flowchart of HyDeploy project[50]

    图 13  HyDeploy项目天然气掺氢运行参数[50]

    Figure 13.  Operation parameters of HyDeploy project gas hydrogen mixing[50]

    图 14  朝阳示范项目具体布局示意图

    Figure 14.  Layout diagram of Chaoyang demonstration project

    图 15  朝阳示范项目设备

    Figure 15.  Equipment of Chaoyang demonstration project

    图 16  朝阳示范项目运行数据

    Figure 16.  Operation parameters of Chaoyang demonstration project

  • [1]

    Statistical review of world energy. [2020-6]. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf.

    [2]

    习近平在第七十五届联合国大会一般性辩论上的讲话(全文). [2020-9]. http://www.qstheory.cn/yaowen/2021-09/22/c_1127887219.htm

    [3]

    IEA. The future of hydrogen. [2019-7]. https://www.iea.org/reports/the-future-of-hydrogen

    [4]

    Genovese A, Contrisciani N, Ortenzi F, et al. On road experimental tests of hydrogen/natural gas blends on transit buses. International Journal of Hydrogen Energy, 2011, 36(2): 1775-1783 doi: 10.1016/j.ijhydene.2010.10.092

    [5]

    Sierens R, Rosseel E. Variable composition hydrogen/natural gas mixtures for increased engine efficiency and decreased emissions. Journal of Engineering for Gas Turbines and Power, 2000, 122(1): 135-140 doi: 10.1115/1.483191

    [6]

    国家能源局. 2021年一季度网上新闻发布会文字实录. [2021-1-3]. http://www.nea.gov.cn/2021-01/30/c_139708580.htm

    [7]

    李敬法, 苏越, 张衡等. 掺氢天然气管道输送研究进展. 天然气工业, 2021, 41(4): 137-152 doi: 10.3787/j.issn.1000-0976.2021.04.015

    Li Jingfa, Su Yue, Zhang Heng, et al. Research progresses on pipeline transportation of hydrogen-blended natural gas. Natural Gas Industry, 2021, 41(4): 137-152 (in Chinese) doi: 10.3787/j.issn.1000-0976.2021.04.015

    [8]

    Ogden J, Jaffe AM, Scheitrum D, et al. Natural gas as a bridge to hydrogen transportation fuel: insights from the literature. Energy Policy, 2018, 115: 317-329 doi: 10.1016/j.enpol.2017.12.049

    [9]

    Witkowski A, Rusin A, Majkut M, et al. Analysis of compression and transport of the methane/hydrogen mixture in existing natural gas pipelines. International Journal of Pressure Vessels and Piping, 2018, 166: 24-34 doi: 10.1016/j.ijpvp.2018.08.002

    [10]

    殷卓成, 杨高, 刘怀等. 氢能储运关键技术研究现状及前景分析. 现代化工, 2021, 41(11): 1-7

    Yin Zhuocheng, Yang Gao, Liu Huai, et al. Research status and prospect analysis of key technologies of hydrogen energy storage and transportation. Modern Chemical Industry, 2021, 41(11): 1-7 (in Chinese)

    [11]

    周承商, 黄通文, 刘煌等. 混氢天然气输氢技术研究进展. 中南大学学报(自然科学版), 2021, 52(1): 31-43

    Zhou Chengshang, Huang Tongwen, Liu Huang, et al. Research progress of hydrogen transport technology for blended hydrogen natural gas. Journal of Central South University(Science and Technology), 2021, 52(1): 31-43 (in Chinese)

    [12]

    Zhao Y, McDonell V, Samuelsen S. Influence of hydrogen addition to pipeline natural gas on the combustion performance of a cooktop burner. International Journal of Hydrogen Energy, 2019, 44(23): 12239-12253 doi: 10.1016/j.ijhydene.2019.03.100

    [13]

    De Vries H, Levinsky HB. Flashback, burning velocities and hydrogen admixture: domestic appliance approval, gas regulation and appliance development. Applied Energy, 2020, 259: 114116 doi: 10.1016/j.apenergy.2019.114116

    [14]

    王玮, 王秋岩, 邓海全等. 天然气管道输送混氢天然气的可行性. 天然气工业, 2020, 40(3): 130-136

    Wang Wei, Wang Qiuyan, Deng Haiquan, et al. Feasibility analysis on the transportation of hydrogen-natural gas mixtures in natural gas pipelines. Natural Gas Industry, 2020, 40(3): 130-136 (in Chinese)

    [15]

    Zhou ZR, Zhang KY, Hong YJ, et al. The dependence of hydrogen embrittlement on hydrogen transport in selective laser melted 304L stainless steel. International Journal of Hydrogen Energy, 2021, 46(29): 16153-16163 doi: 10.1016/j.ijhydene.2021.02.035

    [16]

    Xiang LK, Jiang HT, Ren F, et al. Numerical study of the physical and chemical effects of hydrogen addition on laminar premixed combustion characteristics of methane and ethane. International Journal of Hydrogen Energy, 2020, 45(39): 20501-20514 doi: 10.1016/j.ijhydene.2019.11.040

    [17]

    Melaina MW, Sozinova O, Penev M. blending hydrogen into natural gas pipeline networks: a review of key issues. NREL/TP-5600-51995, United States, 2013

    [18]

    Haeseldonckx D, D’haeseleer W. The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure. International Journal of Hydrogen Energy, 2007, 32(10): 1381-1386

    [19]

    International Energy Agency. The future of hydrogen: Seizing today's opportunities. [2020-5-24]. https://www.iea.org/reports/the-future-of-hydrogen

    [20]

    国家电投集团东北电力有限公司. 国家电投天然气掺氢示范项目第一阶段工程圆满完工. [2020-12-1]. http://chuneng.bjx.com.cn/news/20191015/1013302.shtml

    [21]

    Fuel Cell Sworks. Hydrogen levels in German gas distribution system to be raised to 20 percent for the first time. [2020-5-24]. https://fuelcellsworks.com/news/hydrogen-levels-in-german-gas-distribution-system-to-be-raised-to-20-percent-for-the-first-time/

    [22]

    Sam M. French gas networks could mix in green hydrogen in future, say operators. [2020-5-24]. https://www.euractiv.com/section/energy/news/french-gas-networks-could-mix-in-green-hydrogen-in-future-say-operators/

    [23]

    ITM Power. HyDeploy: UK gas grid injection of hydrogen in full operation. [2020-5-24]. https://www.itm-power.com/news/hydeploy-uk-gas-grid-injection-ofhydrogen-in-full-operation

    [24]

    逄锦伦. 基于煤矿瓦斯工业化利用的混(配)气装置应用现状及前景展望. 矿业安全与环保, 2020, 47(4): 112-115

    Pang Jinlun. Application status and prospect of mixing (distributing) gas device based on coal mine gas industrial utilization. Mining Safety&Environmental Protection, 2020, 47(4): 112-115 (in Chinese)

    [25]

    CONSTA-MIX. Gas mixing system. http://www.algas-sdi.com

    [26]

    Degin H, Lundsgaard JS. Dynamic gas mixing techniques. Journal of Biochemical and Biophysical Methods, 1980, 3(4): 233-242 doi: 10.1016/0165-022X(80)90062-7

    [27]

    龚英利. 天然气发动机进气管内混合气形成过程的可视化研究. [硕士论文]. 天津: 天津大学, 2003

    Gong Yingli. Visualization of air-natural gas mixing process in the intake manifold for natural gas engine. [Master Thesis]. Tianjin: Tianjin University, 2003 (in Chinese)

    [28]

    Abdulaziz AM. Performance and image analysis of a cavitating process in a small type venturi. Experimental Thermal and Fluid Science, 2014, 53: 24-28

    [29]

    Lundsgaard JS, Einer-Jensen N, Juhl B. A pressure regulator for proportional regulation of two gas pressures. IEEE Transactions on Biomedical Engineering, 1978, 25(3): 311-313

    [30]

    Majda AJ, Kramer PR. Simplified models for turbulent diffusion: theory, numerical modelling, and physical phenomena. Physics Reports, 1999, 314(4-5): 237-574 doi: 10.1016/S0370-1573(98)00083-0

    [31]

    Dinh TV, Choi IY, Son YS, et al. A review on non-dispersive infrared gas sensors: improvement of sensor detection limit and interference correction. Sensors and Actuators B:Chemical, 2016, 231: 529-538 doi: 10.1016/j.snb.2016.03.040

    [32]

    Hodgkinson J, Tatam RP. Optical gas sensing: a review. Measurement Science and Technology, 2012, 24(1): 012004

    [33]

    张清, 周李兵, 贺耀宜等. 非分光红外气体传感器研究进展. 激光与红外, 2021, 51(10): 1272-1278 doi: 10.3969/j.issn.1001-5078.2021.10.002

    Zhang Qing, Zhou Libing, He Yaoyi, et al. Research progress of NDIR optical gas sensor. Laser&Infrared, 2021, 51(10): 1272-1278 (in Chinese) doi: 10.3969/j.issn.1001-5078.2021.10.002

    [34]

    Zhang GJ, Li YP, Li QB. A miniaturized carbon dioxide gas sensor based on infrared absorption. Optics and Lasers in Engineering, 2010, 48(12): 1206-1212 doi: 10.1016/j.optlaseng.2010.06.012

    [35]

    Zhang GJ, Wu XL. A novel CO2 gas analyzer based on IR absorption. Optics&Lasers in Engineering, 2004, 42(2): 219-231

    [36]

    李栋辉, 孙永国, 张洪泉. 具有低辐射热的热导气体传感器设计与实现. 仪表技术与传感器, 2021, 9: 1-5 doi: 10.3969/j.issn.1002-1841.2021.02.001

    Li Donghui, Sun Yongguo, Zhang Hongquan. Design and realization of thermal conductivity gas sensor with low radiant heat. Instrument Technique and Sensor, 2021, 9: 1-5 (in Chinese) doi: 10.3969/j.issn.1002-1841.2021.02.001

    [37]

    Shinya N. Oxygen gas concentration measurement in trinary mixture by small thermal conductivity gas flow sensor. Omron Technics, 2020: 52.010EN 2020.4.

    [38]

    Hepp CJ, Krogmann FT, Urban GA. Multi-parameter monitoring of binary gas mixtures: concentration and flow rate by DC excitation of thermal sensor arrays. Sensors and Actuators A:Physical, 2017, 265: 32-39 doi: 10.1016/j.sna.2017.08.011

    [39]

    Dey A. Semiconductor metal oxide gas sensors: a review. Materials Science and Engineering:B, 2018, 229: 206-217 doi: 10.1016/j.mseb.2017.12.036

    [40]

    璩光明, 杨莹丽, 王国东等. 金属氧化物半导体气体传感器改性研究进展. 传感器与微系统, 2022, 41(2): 1-4

    Qu Guangming, Yang Yingli, Wang Guodong, et al. Research progress in properties modification of metal oxide semiconductor gas sensors. Transducer and Microsystem Technologies, 2022, 41(2): 1-4 (in Chinese)

    [41]

    Tetsuya K, Toru K, Masayoshi Y, et al. Study on the response and recovery properties of semiconductor gas sensors using a high-speed gas-switching system. Sensors and Actuators B:Chemical, 2008, 134(2): 928-933 doi: 10.1016/j.snb.2008.06.044

    [42]

    Utembe SR, Hansford GM, Sanderson MG, et al. An ozone monitoring instrument based on the tungsten trioxide (WO3) semiconductor. Sensors and Actuators B:Chemical, 2006, 114(1): 507-512 doi: 10.1016/j.snb.2005.04.049

    [43]

    Yamazaki S, Funaki T, Kawashima K, et al. A concentration measurement system for binary gas mixtures using two flowmeters. Measurement Science&Technology, 2007, 18: 2762

    [44]

    Youn C, Kawashima K, Kagawa T. Concentration measurement systems with stable solutions for binary gas mixtures using two flowmeters. Measurement Science&Technology, 2011, 22(6): 065401

    [45]

    Guan Y, Lu S, Zhang D, et al. A fast and easily-realized concentration sensor for binary gas mixtures and its design analysis. Sensors, 2018, 18(4): 1257 doi: 10.3390/s18041257

    [46]

    Wouden EVD, Groenesteijn J, Wiegerink R, et al. Multi parameter flow meter for on-line measurement of gas mixture composition. Micromachines, 2015, 6(4): 452-461 doi: 10.3390/mi6040452

    [47]

    Kong M, Feng S, Xia Q, et al. Investigation of mixing behavior of hydrogen blended to natural gas in gas network. Sustainability, 2021, 13(8): 4255 doi: 10.3390/su13084255

    [48]

    Tracking Hydrogen. [2020-6]. https://www.iea.org/reports/tracking-hydrogen-2020

    [49]

    Alliat I, Florisson O. Progress obtained in the NATURALHY-project. http://members.igu.org/html/wgc2006pres/data/wgcppt/pdf

    [50]

    Isaac T. HyDeploy: the UK's first hydrogen blending deployment project. Clean Energy, 2019, 3(2): 114-125 doi: 10.1093/ce/zkz006

    [51]

    国家电投东北公司. 国家电投辽宁朝阳天然气掺氢示范项目. [2019-9-30]. https://news.bjx.com.cn/special/?id=1013148

  • 加载中

(16)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-01-25
修回日期:  2022-03-01
刊出日期:  2022-08-08

目录