高级检索

太阳与地磁活动对超低轨重力卫星电推进系统工作的影响

汪林蔚, 崔凯, 于达仁. 太阳与地磁活动对超低轨重力卫星电推进系统工作的影响[J]. 气体物理, 2023, 8(1): 17-25. doi: 10.19527/j.cnki.2096-1642.0988
引用本文: 汪林蔚, 崔凯, 于达仁. 太阳与地磁活动对超低轨重力卫星电推进系统工作的影响[J]. 气体物理, 2023, 8(1): 17-25. doi: 10.19527/j.cnki.2096-1642.0988
WANG Lin-wei, CUI Kai, YU Da-ren. Influence of Solar and Geomagnetic Activities on Electrical Propulsion System of Ultra-Low Orbit Gravity Satellite[J]. PHYSICS OF GASES, 2023, 8(1): 17-25. doi: 10.19527/j.cnki.2096-1642.0988
Citation: WANG Lin-wei, CUI Kai, YU Da-ren. Influence of Solar and Geomagnetic Activities on Electrical Propulsion System of Ultra-Low Orbit Gravity Satellite[J]. PHYSICS OF GASES, 2023, 8(1): 17-25. doi: 10.19527/j.cnki.2096-1642.0988

太阳与地磁活动对超低轨重力卫星电推进系统工作的影响

详细信息
    作者简介:

    汪林蔚(2000-)男, 硕士, 主要研究方向为航天器离子推力器。E-mail: wang_linwei_dyx@163.com

    通讯作者: 于达仁(1966-)男, 教授, 博士生导师, 主要研究方向为空间电推进技术。E-mail: yudaren@hit.edu.cn
  • 中图分类号: V439+.4

Influence of Solar and Geomagnetic Activities on Electrical Propulsion System of Ultra-Low Orbit Gravity Satellite

More Information
    Corresponding author: YU Da-ren, E-mail: yudaren@hit.edu.cn
  • 面向当前第25太阳活动周, 评估太阳与地磁活动对超低轨重力卫星电推进系统工作的影响。通过对超低轨道重力卫星进行轨道仿真和分析GOCE任务数据, 得出大气阻力的变化规律, 并获得了太阳活动极大年附近任务和极小年附近任务对携带工质量的影响、地磁暴对电推进系统保持"无拖曳"工作的影响。结果表明: 其余情况相同下, 卫星在太阳活动低年附近任务的工作轨道高度可较高年降低约20 km, 有利于提高重力信号强度。强地磁暴通常引起超低轨道卫星阻力增加30%~90%, 飞行控制需为克服地磁暴影响留足够的推力裕度。推力器设计应保证最大推力的10%~70%推力区间具有高比冲, 且着重考虑此区间的寿命问题。

  • 加载中
  • 图 1  UT 2008.12.1 -2019.12.31每日F10.7指数[28]

    Figure 1.  UT 2008.12.1 -2019.12.31 daily F10.7 index[28]

    图 2  UT 2008.12.1 -2019.12.31 ap指数[28]

    Figure 2.  UT 2008.12.1 -2019.12.31 ap index[28]

    图 3  一轨的典型特征

    Figure 3.  Characteristics in one orbit

    图 4  每轨平均阻力的季度与单日变化

    Figure 4.  Seasonal and daily variations of drag averaged over each orbit

    图 5  太阳活动与轨道高度对5年平均阻力的影响

    Figure 5.  Influence of solar activity and orbital altitude on 5-year mean drag

    图 6  太阳活动与轨道高度对5年任务携带工质量的影响

    Figure 6.  Influence of solar activity and orbital altitude on propellant consumption for 5-year missions

    图 7  每轨平均密度对地磁暴事件的响应[37]

    Figure 7.  Influence of geomagnetic storms on thermosphere density averaged over each orbit[37]

    图 8  超低轨道上磁暴对每轨平均密度相对变化的影响[28, 37]

    Figure 8.  Influence of geomagnetic storms on relative density variations at ultra-low orbit[28, 37]

    图 9  强地磁暴引起电推进推力饱和的情况[37]

    Figure 9.  Reaching the maximum deliverable thrust during a strong geomagnetic storm[37]

    图 10  推力调节范围[37]

    Figure 10.  Throttling range[37]

    表 1  计算中使用的太阳与地磁活动指数值

    Table 1.  Solar and geomagnetic activity index used in calculations

    index standard high low
    F10.7 140 124 75
    ap 15 9 7
    下载: 导出CSV
  • [1]

    郑伟, 鄢建国, 李钊伟. 深空卫星重力测量计划研究综述[J]. 深空探测学报, 2017, 4(1): 3-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SKTC201701001.htm

    Zheng W, Yan J G, Li Z W. Reviews on deep space satellite gravity measurement mission[J]. Journal of Deep Space Exploration, 2017, 4(1) : 3-13(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SKTC201701001.htm

    [2]

    孙和平, 孙文科, 申文斌, 等. 地球重力场及其地学应用研究进展——2020中国地球科学联合学术年会专题综述[J]. 地球科学进展, 2021, 36(5): 445-460. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202105002.htm

    Sun H P, Sun W K, Shen W B, et al. Research progress of earth's gravity field and its application in geosciences—a summary of annual meeting of chinese geoscience union in 2020[J]. Advances in Earth Science, 2021, 36 (5): 445-460(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202105002.htm

    [3]

    宁津生. 跟踪世界发展动态致力地球重力场研究[J]. 武汉大学学报·信息科学版, 2001, 26(6): 471-474, 486. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200106000.htm

    Ning J S. Following the developments of the world, devoting to the study on the earth gravity field[J]. Geomatics and Information Science of Wuhan University, 2001, 26(6): 471-474, 486. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200106000.htm

    [4]

    万晓云, 张润宁, 眭晓虹, 等. 基于卫星观测数据的地球重力场探测技术发展趋势分析[J]. 航天器工程, 2017, 26(2): 121-129. https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC201702019.htm

    Wan X Y, Zhang R N, Sui X H, et al. Analysis of earth gravity field detection based on satellite data[J]. Spacecraft Engineering, 2017, 26(2): 121-129(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC201702019.htm

    [5]

    郑伟, 许厚泽, 钟敏, 等. 国际重力卫星研究进展和我国将来卫星重力测量计划[J]. 测绘科学, 2010, 35(1): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201001002.htm

    Zheng W, Xu H Z, Zhong M, et al. Research progress in international gravity satellites and future satellite gravity measurement program in China[J]. Science of Surveying and Mapping, 2010, 35 (1): 5-9(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201001002.htm

    [6]

    程鹏飞, 文汉江, 刘焕玲, 等. 卫星重力与卫星测高的研究进展[J]. 测绘科学, 2019, 44(6): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201906002.htm

    Cheng P F, Wen H J, Liu H L, et al. Research progress in satellite gravity and satellite altimetry[J]. Science of Surveying and Mapping, 2019, 44 (6): 16-22(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201906002.htm

    [7]

    罗子人, 钟敏, 边星, 等. 地球重力场空间探测: 回顾与展望[J]. 力学进展, 2014, 44(1): 291-337. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201400008.htm

    Luo Z R, Zhong M, Bian X, et al. Mapping earth's gravity in space: review and future perspective[J]. Advances in Mechanics, 2014, 44(1): 291-337(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201400008.htm

    [8]

    徐新禹, 姜卫平, 张晓敏, 等. 一种新型重力测量卫星系统确定全球重力场的性能分析[J]. 地球物理学报, 2018, 61(6): 2227-2236. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201806006.htm

    Xu X Y, Jiang W P, Zhang X M, et al. Ability of recovering the global gravity field of a new satellite gravimetry system[J]. Chinese Journal of Geophysics, 2018, 61(6): 2227-2236(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201806006.htm

    [9]

    郑伟, 许厚泽, 钟敏, 等. 卫-卫跟踪测量模式中轨道高度的优化选取[J]. 大地测量与地球动力学, 2009, 29(2): 100-105, 110. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200902024.htm

    Zheng W, Xu H Z, Zhong M, et al. Optimal design of orbital altitude in satellite-to-satellite tracking model[J]. Journal of Geodesy and Geodynamics, 2009, 29 (2): 100-105, 110(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200902024.htm

    [10]

    GOCE flight control team(HSO-OEG). GOCE end-of-mission operations report[R]. GO-RP-ESC-FS-6268, 2014.

    [11]

    St Rock B, Blandino J J, Demetriou M. Propulsion requirements for drag-free operation of spacecraft in low Earth orbit[J]. Journal of Spacecraft and Rockets, 2006, 43(3): 594-606.

    [12]

    刘林. 卫星轨道力学算法[M]. 南京: 南京大学出版社, 2019.

    Liu L. Orbital mechanics algorithm[M]. Nanjing: Press of Nanjing University, 2019(in Chinese).

    [13]

    Xu M, Wang J L, Zhou N. Computational mission ana-lysis and conceptual system design for super low altitude satellite[J]. Journal of Systems Engineering and Electronics, 2014, 25(1): 43-58.

    [14]

    胡凌云, 张立华, 程晓丽, 等. 超低轨航天器气动设计与计算方法探讨[J]. 航天器工程, 2016, 25(1): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC201601002.htm

    Hu L Y, Zhang L H, Cheng X L, et al. Method of aerodynamic design and calculation for ultra-LEO spacecraft[J]. Spacecraft Engineering, 2016, 25 (1): 10-18(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC201601002.htm

    [15]

    周伟勇, 张育林, 刘昆. 超低轨航天器气动力分析与减阻设计[J]. 宇航学报, 2010, 31(2): 342-348. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201002008.htm

    Zhou W Y, Zhang Y L, Liu K. Aerodynamics analysis and reduced drag design for the lower LEO spacecraft[J]. Journal of Astronautics, 2010, 31 (2): 342-348(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201002008.htm

    [16]

    靳旭红, 黄飞, 程晓丽, 等. 超低地球轨道卫星大气阻力预测与影响因素分析[J]. 清华大学学报(自然科学版), 2020, 60(3): 219-226. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202003005.htm

    Jin X H, Huang F, Cheng X L, et al. Atmospheric drag on satellites flying in lower low-earth orbit[J]. Journal of Tsinghua University(Science and Technology), 2020, 60 (3): 219-226(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202003005.htm

    [17]

    Canuto E. Drag-free and attitude control for the GOCE satellite[J]. Automatica, 2008, 44(7): 1766-1780.

    [18]

    Fearn D. A study of the throttling of the T5 ion thrus-ter[C]. 32nd Joint Propulsion Conference and Exhibit. Lake Buena Vista, FL, USA: AIAA, 1996.

    [19]

    黄永杰, 杨福全, 贾艳辉. 基于T5离子推力器无拖曳飞行技术[J]. 真空与低温, 2014, 20(5): 272-277. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW201405006.htm

    Huang Y J, Yang F Q, Jia Y H. Spacecraft drag-free flight based on T5 ion thruster[J]. Vacuum & Cryogenics, 2014, 20 (5): 272-277(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW201405006.htm

    [20]

    胡竟, 王东升, 杨福全, 等. 面向空间无拖曳飞行任务的连续变推力离子推力器研制[J]. 真空与低温, 2022, 28(1): 72-78. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW202201009.htm

    Hu J, Wang D S, Yang F Q, et al. Development of continuous variable-thrust ion thruster for drag-free flight missions[J]. Vacuum & Cryogenics, 2022, 28(1): 72-78(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW202201009.htm

    [21]

    胡竟, 杨福全, 郭德洲, 等. 10 cm氙离子推力器变推力特性研究[J]. 推进技术, 2020, 41(10): 2382-2389. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202010027.htm

    Hu J, Yang F Q, Guo D Z, et al. Analysis on variable-thrust characteristic of 10 cm xenon ion thruste[J]. Jour-nal of Propulsion Technology, 2020, 41(10): 2382-2389 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202010027.htm

    [22]

    杨福全, 王成飞, 胡竟, 等. 超低轨道卫星应用离子电推进技术方案[J]. 中国空间科学技术, 2021, 41(3): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ202103009.htm

    Yang F Q, Wang C F, Hu J, et al. Technical project of ion propulsion for satellites in super low earth orbit[J]. Chinese Space Science and Technology, 2021, 41 (3): 52-59(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ202103009.htm

    [23]

    Bigazzi A, Cauli C, Berrilli F. Lower-thermosphere response to solar activity: an empirical-mode-decomposition analysis of GOCE 2009-2012 data[J]. Annales Geophysicae, 2020, 38(3): 789-800.

    [24]

    Bruinsma S, Boniface C, Sutton E K, et al. Thermosphere modeling capabilities assessment: Geomagnetic storms[J]. Journal of Space Weather and Space Climate, 2021, 11: 12.

    [25]

    Bruinsma S, Sutton E, Solomon S C, et al. Space weather modeling capabilities assessment: Neutral density for orbit determination at low Earth orbit[J]. Space Wea-ther, 2018, 16(11): 1806-1816.

    [26]

    Bruinsma S, Arnold D, Jäggi A, et al. Semi-empirical thermosphere model evaluation at low altitude with GOCE densities[J]. Journal of Space Weather and Space Climate, 2017, 7: A4.

    [27]

    Solar Cycle Progression[EB/OL]. https://www.swpc.noaa.gov/products/solar-cycle-progression.

    [28]

    The Helmholtz Centre Potsdam-GFZ German Research Centre for Geosciences[DB/OL]. https://www.gfz-potsdam.de/en/kp-index.

    [29]

    Picone J M, Hedin A E, Drob D P, et al. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A12): 1468.

    [30]

    NRLMSISE-00 Model 2001[DB/OL]. https://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php.

    [31]

    Doornbos E. GOCE thermospheric dataset user manual[R]. ESA AO/1-6367/10/NL/AF TU Delft, 2019.

    [32]

    Del Amo J G. RAM electric propulsion for low Earth orbit operation: and ESA study[C]. 30th International Electric Propulsion Conference. Florence, Italy, 2007.

    [33]

    Koppenwallner G. Satellite aerodynamics and determina-tion of thermospheric density and wind[C]. 27th International Symposium on Rarefied Gas Dynamics. AIP Conference Proceedings, 2011, 1333: 1307-1312.

    [34]

    Steiger C. Evolution of flight operations for ESA's gravity mission GOCE[C]. SpaceOps 2012 Conference. Stockholm, Sweden: AIAA, 2012.

    [35]

    张庆君, 刘杰, 等. 航天器系统设计[M]. 北京: 北京理工大学出版社, 2018.

    Zhang Q J, Liu J, et al. Spacecraft system design[M]. Beijing: Beijing Institute of Technology Press, 2018(in Chinese).

    [36]

    Tisaev M, Ferrato E, Giannetti V, et al. Air-breathing electric propulsion: flight envelope identification and development of control for long-term orbital stability[J]. Acta Astronautica, 2022, 191: 374-393.

    [37]

    GOCE Data[DB/OL]. https://earth.esa.int/eogateway/missions/goce/data.

  • 加载中

(10)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-04-27
修回日期:  2022-06-07
刊出日期:  2023-01-20

目录