高级检索

空间电推进技术发展及应用展望

耿海, 李婧, 吴辰宸, 孙新锋, 王紫桐, 贾艳辉, 王尚民, 李兴达, 蒲彦旭. 空间电推进技术发展及应用展望[J]. 气体物理, 2023, 8(1): 1-16. doi: 10.19527/j.cnki.2096-1642.0977
引用本文: 耿海, 李婧, 吴辰宸, 孙新锋, 王紫桐, 贾艳辉, 王尚民, 李兴达, 蒲彦旭. 空间电推进技术发展及应用展望[J]. 气体物理, 2023, 8(1): 1-16. doi: 10.19527/j.cnki.2096-1642.0977
GENG Hai, LI Jing, WU Chen-chen, SUN Xin-feng, WANG Zi-tong, JIA Yan-hui, WANG Shang-min, LI Xing-da, PU Yan-xu. Development and Application Prospect of Space Electric Propulsion Technology[J]. PHYSICS OF GASES, 2023, 8(1): 1-16. doi: 10.19527/j.cnki.2096-1642.0977
Citation: GENG Hai, LI Jing, WU Chen-chen, SUN Xin-feng, WANG Zi-tong, JIA Yan-hui, WANG Shang-min, LI Xing-da, PU Yan-xu. Development and Application Prospect of Space Electric Propulsion Technology[J]. PHYSICS OF GASES, 2023, 8(1): 1-16. doi: 10.19527/j.cnki.2096-1642.0977

空间电推进技术发展及应用展望

  • 基金项目:
    国防基础科研项目(JCKY2018203B030);国家自然科学基金(61801201);甘肃省杰出青年基金(20JR10RA481);中国航天科技集团拔尖人才、自主研发项目(YF-ZZYF-2021-132);真空技术与物理重点实验室基金(HTKJ2021KL510002)
详细信息
    作者简介:

    耿海(1980-)男, 研究员, 主要研究方向为空间电推进系统产品化研制。E-mail: marineen115@163.com

    通讯作者: 蒲彦旭(1991-)男, 工程师, 主要研究方向为射频离子推力器技术。E-mail: pu_yanxu@126.com
  • 中图分类号: V439

Development and Application Prospect of Space Electric Propulsion Technology

More Information
    Corresponding author: PU Yan-xu, E-mail: pu_yanxu@126.com
  • 我国空间电推进技术已进入成熟和全面应用的新阶段。为进一步促进电推进技术发展, 加速推动空间动力领域技术进步, 采用调研、对比分析的方法, 以功率为划分标准, 重点结合未来空间任务对电推进的应用需求, 针对电推进各技术方向的特点, 从"中、微、超"3个功率区间对空间电推进进行了分类综述。总结了国内外电推进技术的发展现状和存在的不足, 提出了需要攻克的关键难点, 研判了发展的主要趋势, 归纳了存在的共性问题, 提出了未来10年空间电推进技术的发展建议, 供我国卫星用户、总体单位和空间电推进专业技术单位参考。

  • 加载中
  • 图 1  空间电推进技术路线划分与典型产品

    Figure 1.  Technical route division and typical products of space electric propulsion

    图 2  欧洲GOCE卫星飞行概念图及SLATS计划飞行剖面

    Figure 2.  European GOCE satellite flight concept and SLATS program flight profile

    图 3  吸气式电推进N2/O2混合工质放电及涡轮增压装置

    Figure 3.  Air-breathing electric propulsion N2/O2 mixed working medium discharge and turbocharging device

    图 4  BHT系列小功率Hall电推进产品

    Figure 4.  BHT series small power Hall electric propulsion products

    图 5  BIT-3射频离子推力器系统

    Figure 5.  BIT-3 RF ion thruster system

    图 6  NPT-30射频离子推力器

    Figure 6.  NPT-30 RF ion thruster

    图 7  LRIT-30推力器实物及点火[43]

    Figure 7.  LRIT-30 thruster and discharge process[43]

    图 8  推力器实物及点火[40]

    Figure 8.  Thruster and discharge process[40]

    图 9  NSD-IRIT3.5系统样机[41]

    Figure 9.  NSD-IRIT3.5 system prototype[41]

    图 10  LPPT-5飞行产品

    Figure 10.  LPPT-5 flight products

    图 11  LPPT-25推进系统三维示意图

    Figure 11.  Three-dimensional schematic diagram of LPPT-25 propulsion system

    图 12  PPT实验样机

    Figure 12.  PPT experimental prototype

    图 13  LVAT-1/2推力器实物图

    Figure 13.  LVAT-1/2 thruster picture

    图 14  ARC公司LMIS场效应电推力器

    Figure 14.  LMIS of ARC

    图 15  超高比冲离子推力器束流引出

    Figure 15.  Ultrahigh specific impulse ion thruster discharge process

    图 16  大功率Hall推力器放电测试

    Figure 16.  Discharge test of high power Hall thruster

    图 17  FRPT电磁推进

    Figure 17.  FRPT electromagnetic propulsion

    图 18  5 kW FRPT样机试验

    Figure 18.  5 kW FRPT prototype test

    图 19  磁等离子体电推进

    Figure 19.  MPD thruster

    图 20  MkVa PIT电推进原理样机

    Figure 20.  MkVa PIT electric propulsion principle prototype

    图 21  AARC公司VF-200推力器

    Figure 21.  VF-200 thruster of AARC

    图 22  HPT放电测试图

    Figure 22.  HPT discharge test

    图 23  束粒子推进和核电推进概念图

    Figure 23.  Concept diagram of beam particle propulsion and nuclear propulsion

    表 1  BHT系列小功率Hall电推进性能参数

    Table 1.  Performance parameters of BHT series low-power Hall electric propulsion

    thruster input power/W thrust/mN specific impulse/s total impulse/(kN·s) mass/kg propellant
    BHT-100 100 7 1 000 >250 1.16 Xe, I
    BHT-200 200 13 1 390 >140 0.98 Xe, I
    BHT-350 200~600 17 1 244 >250 1.7 Xe, I, Kr
    下载: 导出CSV

    表 2  国内小功率Hall电推进产品性能表

    Table 2.  Performance parameters of domestic low-power Hall electric propulsion

    thruster input power/W thrust/mN specific impulse/s propellant development organization
    HET-5 30~100 5 800~1 000 Xe Shanghai Institute of Space Propulsion
    HET-20 400 20 1 200 Xe Shanghai Institute of Space Propulsion
    HET-40 660 40 1 500 Xe Shanghai Institute of Space Propulsion
    LHT-40 100~300 4~13 800~1 200 Xe, Kr Lanzhou Institute of Physics
    LHT-50 300 15 1 350 Xe, Kr Lanzhou Institute of Physics
    LHT-60 300~600 15~30 1 350~1 600 Xe, Kr Lanzhou Institute of Physics
    LHT-70 640 34 1 500 Xe, Kr Lanzhou Institute of Physics
    HEP-40 215 10 1 200 Xe Beijing Institute of Control Engineering
    下载: 导出CSV

    表 3  射频离子推力器关键指标对比

    Table 3.  Comparison of key indicators of RF ion thruster

    index grid diameter/cm total power/W thrust/mN specific impulse/s maximum efficiency propellant
    LRIT-30 3 55~118 0.5~2.3 896~2 654 22.3% Xe
    RIT-4 3.1 86~115 2.8~3.2 1 760~2 580 30.3% Xe
    BIT-3 3 60~100 1.4~2.1 1 500~2 850 27% Xe
    下载: 导出CSV

    表 4  国外脉冲等离子体推力器在轨应用情况

    Table 4.  In-orbit application of PPT abroad

    thrusters technical proposal total impulse/(μN·s) specific impulse/s satellites tasks countries
    MPACS three electrode coaxial type 80 827 FalconSat-3 attitude control USA
    MDR-PPT electrothermal coaxial type 1.44~2.47 241~590 PROITERS attitude control Japan
    DPPT miniature plate type 22.4 525 AOBA-VELOX 3 orbital maintenance Singapore
    PPT miniature coaxial type 7 600 Pegasus orbital maintenance Austria
    PPT 40±3.5 655±58 STRAND-1 orbital maintenance England
    下载: 导出CSV

    表 5  国外真空弧推力器在轨应用情况表

    Table 5.  In-orbit application of VAT abroad

    thrusters technical proposal total impulse/(μN·s) specific impulse/s thrust/μN satellites countries
    μCAT coaxial type 1 2 000~3 000 1~50 PHONESATBRICsat-PCANYVAL-X USA
    VAT coaxial type 1~30 2 UWE-4 Germany
    VAT coaxial type 1~3 1.6 Horyu-4 Japan
    下载: 导出CSV
  • [1]

    张天平, 耿海, 张雪儿, 等. 离子电推进技术的发展现状与未来[J]. 上海航天, 2019, 36(6): 88-96. doi: 10.19328/j.cnki.1006-1630.2019.06.013

    Zhang T P, Geng H, Zhang X E, et al. Current status and future development of ion electric propulsion[J]. Aerospace Shanghai, 2019, 36(6): 88-96 (in Chinese). doi: 10.19328/j.cnki.1006-1630.2019.06.013

    [2]

    张天平, 张雪儿. 空间电推进技术及应用新进展[J]. 真空与低温, 2013, 19(4): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW201304001.htm

    Zhang T P, Zhang X E. Electric propulsion progress in technologies and applications[J]. Vacuum and Cryoge-nics, 2013, 19(4): 187-194 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW201304001.htm

    [3]

    于达仁, 乔磊, 蒋文嘉, 等. 中国电推进技术发展及展望[J]. 推进技术, 2020, 41(1): 1-11. doi: 10.13675/j.cnki.tjjs.190140

    Yu D R, Qiao L, Jiang W J, et al. Development and prospect of electric propulsion technology in China[J]. Journal of Propulsion Technology, 2020, 41(1): 1-11 (in Chinese). doi: 10.13675/j.cnki.tjjs.190140

    [4]

    张伟文, 张天平. 空间电推进的技术发展及应用[J]. 国际太空, 2015(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201503002.htm

    Zhang W W, Zhang T P. Technological development and application of electrically powered spacecraft propulsion[J]. Space International, 2015(3): 1-8 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201503002.htm

    [5]

    刘一薇. "实践9号"卫星电推进首次在轨试验验证[J]. 深空探测学报, 2017, 4(3): 245-251. https://www.cnki.com.cn/Article/CJFDTOTAL-SKTC201703007.htm

    Liu Y W. The first on-orbit technology demonstration for the electric propulsion of SJ-9 satellite[J]. Journal of Deep Space Exploration, 2017, 4(3): 245-251 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SKTC201703007.htm

    [6]

    蔡婷. "长征"三号B运载火箭成功发射"亚太"6D通信卫星[J]. 中国航天, 2020(7): 28-29. doi: 10.3969/j.issn.1002-7742.2020.07.009

    Cai T. A LM-3B puts apstar-6d satellite into orbit[J]. Aerospace China, 2020(7): 28-29 (in Chinese). doi: 10.3969/j.issn.1002-7742.2020.07.009

    [7]

    任亚军, 王小永. 高性能电推进系统的发展及在GEO卫星平台中的应用[J]. 真空与低温, 2018, 24(1): 60-65. doi: 10.3969/j.issn.1006-7086.2018.01.011

    Ren Y J, Wang X Y. Development of high-performances electric propulsion system and the application on geo sa-tellite platforms[J]. Vacuum and Cryogenics, 2018, 24(1): 60-65 (in Chinese). doi: 10.3969/j.issn.1006-7086.2018.01.011

    [8]

    Cao H J, Chu Y C, Wang E M, et al. Numerical simulation study on barrel erosion of ion thruster accelerator grid[J]. Journal of Propulsion and Power, 2015, 31(6): 1785-1792. doi: 10.2514/1.B35717

    [9]

    Sengupta A, Brophy J R, Goodfellow K D, et al. Status of the extended life test of the deep space 1 flight spare ion engine after 30, 325 hours of operation[R]. AIAA 2003-4558, 2003.

    [10]

    Nakamura-Messenger K, Squyres S W, Pace L F, et al. The CAESAR new frontiers comet sample return mission[J]. Microscopy and Microanalysis, 2018, 24(S1): 2104-2105. doi: 10.1017/S1431927618011005

    [11]

    Dotto E, Corte V D, Amoroso M, et al. LICIACube-the light Italian cubesat for imaging of asteroids in support of the NASA DART mission towards asteroid (65803) Didymos[J]. Planetary and Space Science, 2021, 199: 105185. doi: 10.1016/j.pss.2021.105185

    [12]

    Johnson L, Alexander L, Baggett R M, et al. NASA's in-space propulsion technology program: overview and update[R]. AIAA 2004-3841, 2004.

    [13]

    Herman D A, Tofil T, Santiago W, et al. Overview of the development and mission application of the advanced electric propulsion system (AEPS)[C]. The 35th International Electric Propulsion Conference. Atlanta: NASA, 2017.

    [14]

    Randolph T. NASA jet propulsion laboratory, an overview of the nuclear electric xenon ion system (NEXIS) Activity[R]. AIAA 2004-5909, 2004.

    [15]

    Elliott F, Foster J, Patterson M. An overview of the high power electric propulsion (HiPEP) project[R]. AIAA 2004-3453, 2004.

    [16]

    赵以德, 张天平, 黄永杰, 等. 40 cm离子推力器功率宽范围工作实验研究[J]. 推进技术, 2018, 39(4): 942-947. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201804028.htm

    Zhao Y D, Zhang T P, Huang Y J, et al. Experimental study of 40 cm ion thruster over a wide range of input power[J]. Journal of Propulsion Technology, 2018, 39(4): 942-947 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201804028.htm

    [17]

    于达仁, 李玉全, 宁中喜, 等. 稳态等离子推进器通道壁面材料特性及腐蚀寿命问题分析[C]. 中国宇航学会深空探测技术专业委员会第一届学术会议论文集. 哈尔滨: 中国宇航学会, 中国科学院, 哈尔滨工业大学, 2005.

    Yu D R, Li Y Q, Ning Z X, et al. Analysis of material properties and corrosion life of steady state plasma propeller channel wall[C]. Academic Conference of Deep Space Exploration Technology Committee, Chinese Society of Astronautics. Harbin: Chinese Society of Astronautics, Chinese Academy of Sciences, Harbin Institute of Technology, 2005 (in Chinese).

    [18]

    郑茂繁, 江豪成, 张天平, 等. 离子推进器C/C复合材料栅极研究[J]. 航天器环境工程, 2010, 27(6): 756-759. https://www.cnki.com.cn/Article/CJFDTOTAL-HTHJ201006024.htm

    Zheng M F, Jiang H C, Zhang T P, et al. C/C composite grid for ion thruster[J]. Spacecraft Environment Engineering, 2010, 27(6): 756-759 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HTHJ201006024.htm

    [19]

    Shastry R, Herman A, Soulas G C, et al. Status of NASA's evolutionary xenon thruster (NEXT) long-duration test as of 50, 000 h and 900 kg throughput[C]. The 33rd International Electric Propulsion Conference. Washington: The George Washington University, 2013.

    [20]

    王少宁, 成钢, 赵登峰. 空间离子电推进系统电源处理单元设计[J]. 真空与低温, 2011, 17(4): 235-240.

    Wang S N, Cheng G, Zhao D F, et al. Design of a power processing unit for space ion electric propulsion system[J]. Vacuum and Cryogenics, 2011, 17(4): 235-240 (in Chinese).

    [21]

    方芳, 吴明阁. "星链"低轨星座的主要发展动向及分析[J]. 中国电子科学研究院学报, 2021, 16(9): 933-936. https://www.cnki.com.cn/Article/CJFDTOTAL-KJPL202109015.htm

    Fang F, Wu M G. Development trend and analysis of ″Starlink″ LEO satellites constellation[J]. Journal of CAEIT, 2021, 16(9): 933-936 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJPL202109015.htm

    [22]

    陈茂林, 刘旭辉, 周浩浩, 等. 适用于微纳卫星的微型电推进技术研究进展[J]. 固体火箭技术, 2021, 44(2): 188-206. https://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ202102009.htm

    Chen M L, Liu X H, Zhou H H, et al. Research and development of micro electric propulsion technology for micro/nano satellites[J]. Journal of Solid Rocket Technology, 2021, 44(2): 188-206 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ202102009.htm

    [23]

    Szabo J J, Tedrake R, Metivier E, et al. Characterization of a one hundred watt, long lifetime hall effect thruster for small spacecraft[R]. AIAA 2017-4728, 2017.

    [24]

    Bromaghim D, Reed G, Singleton J, et al. Summary of on-orbit performance of the 200-W hall thruster system on TacSat-2[J]. JANNAF Journal of Propulsion and Energetics, 2011, 4(1): 87-102.

    [25]

    Ikeda T, Togawa K, Tahara H, et al. Performance characteristics of very low power cylindrical Hall thrusters for the nano-satellite ″PROITERES-3″[J]. Vacuum, 2013, 88: 63-69.

    [26]

    Loyan A V, Koshelev N N, Maksymenko T A, et al. Study of the SPT-20M7 low power Ukrainian hall effect thruster[J]. Romanian Journal of Physics, 2011, 56(S1): 95-102.

    [27]

    陈新伟, 顾左, 高俊, 等. 低功率霍尔推力器束流发散和推力矢量偏心特性研究[J/OL]. 推进技术, 2021. (2021-07-29). https://t.cnki.net/kcms/detail?v=3uoqIhG8C46NmWw7YpEsKHTPvOGrUOOqX1coEOzL8AFGAh45mbT7GzVCphcXXgmXl55ghwG07CDXMcVD9OBX0-X6VTj4wzin&uniplatform=NZKPT.

    Chen X W, Gu Z, Gao J, et al. Beam divergence and thrust vector deviation characteristics of low-power hall thruster[J/OL]. Journal of Propulsion Technology, 2021. (2021-07-29). https://t.cnki.net/kcms/detail?v=3uoqIhG8C46NmWw7YpEsKHTPvOGrUOOqX1coEOzL8AFGAh45mbT7GzVCphcXXgmXl55ghwG07CDXMcVD9OBX0-X6VTj4wzin&uniplatform=NZKPT (in Chinese).

    [28]

    赵震, 程佳兵, 康小录. 温度对磁屏蔽霍尔推力器磁场构型的影响研究[J]. 中国空间科学技术, 2020, 40(4): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ202004005.htm

    Zhao Z, Cheng J B, Kang X L. Effect of temperature on magnetic field configuration of magnetically shielded Hall thruster[J]. Chinese Space Science and Technology, 2020, 40(4): 29-37 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ202004005.htm

    [29]

    吴楠, 毛威, 沈岩, 等. 基于半经验模型的霍尔推力器壁面腐蚀形貌预测方法研究[J]. 推进技术, 2019, 40(11): 2626-2632.

    Wu N, Mao W, Shen Y, et al. Wall corrosion morphol-ogy prediction of hall thrusters using semi-empirical method[J]. Journal of Propulsion Technology, 2019, 40(11): 2626-2632 (in Chinese).

    [30]

    魏立秋, 李文博, 蔡海阔, 等. 霍尔推力器点火过程研究现状及展望[J]. 宇航学报, 2020, 41(6): 666-675.

    Wei L Q, Li W B, Cai H K, et al. Research status and outlooks of hall thruster ignition process[J]. Journal of Astronautics, 2020, 41(6): 666-675 (in Chinese).

    [31]

    Corbett M H, Edwards C H. Thrust control algorithms for the GOCE ion propulsion assembly[C]. 30th Internati-onal Electric Propulsion Conference. Florence: IEPC, 2007.

    [32]

    Di Cara D, Bulit A, Gonzalez del Amo J, et al. Experimental validation of RIT micro-propulsion subsystem performance at EPL[C]. 33rd International Electric Propul-sion Conference. Washington: IEPC, 2013.

    [33]

    Di Cara D, Strandmoe S, Perez J A R, et al. RIT MicroPropulsion system on Lisa pathfinder[C]. 32nd International Electric Propulsion Conference. Weisbaden: IEPC, 2011.

    [34]

    Tsay M, Frongillo J, Model J, et al. Maturation of iodine-fueled BIT-3 RF ion thruster and RF neutralizer[R]. AIAA 2016-4544, 2016.

    [35]

    Malphrus B K, Brown K Z, Garcia J, et al. The lunar IceCube EM-1 mission: prospecting the moon for water ice[J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 34(4): 6-14.

    [36]

    Rafalskyi D, Martínez J M, Habl L, et al. In-orbit demonstration of an iodine electric propulsion system[J]. Nature, 2021, 599(7885): 411-415.

    [37]

    Wu C C, Sun X F, Gu Z, et al. Numerical research of a 2D axial symmetry hybrid model for the radio-frequency ion thruster[J]. Plasma Science and Technology, 2018, 20(4): 045502.

    [38]

    李兴达, 张兴民, 李建鹏, 等. 射频电子源数值仿真及实验研究[J]. 推进技术, 2019, 40(10): 2394-2400.

    Li X D, Zhang X M, Li J P, et al. Numerical simulation and experimental study of radio frequency electron source[J]. Journal of Propulsion Technology, 2019, 40(10): 2394-2400 (in Chinese).

    [39]

    马隆飞, 贺建武, 杨超, 等. 微牛级射频离子推力器结构优化研究[J]. 推进技术, 2021, 42(2): 474-480. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202102027.htm

    Ma L F, He J W, Yang C, et al. Structure optimization of micro-Newton class radio-frequency ion thruster[J]. Journal of Propulsion Technology, 2021, 42(2): 474-480 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202102027.htm

    [40]

    鲁海峰, 李济源, 赵杨, 等. 射频离子推力器束流特性研究[C]. 第十六届中国电推进学术研讨会论文集. 南京: 中国宇航学会电推进技术专业委员会, 2020.

    Lu H F, Li J Y, Zhao Y, et al. Study on beam characteristics of radio frequency ion thruster[C]. Proceedings of the 15th China Electric Propulsion Conference. Nanjing: Committee of Electric Propulsion Technology, Chinese Society of Astronautics, 2020 (in Chinese).

    [41]

    李龙, 杨景华, 张振华, 等. IRIT3.5-2D碘工质离子电推进系统研制[C]. 第十六届中国电推进学术研讨会论文集. 南京: 中国宇航学会电推进技术专业委员会, 2020.

    Li L, Yang J H, Zhang Z H, et al. Development of IRIT3.5-2D Iodine working medium ion electric propu-lsion system[C]. Proceedings of the 16th China Electric Propulsion Conference. Nanjing: Committee of Electric Propulsion Technology, Chinese Society of Astronautics, 2020 (in Chinese).

    [42]

    罗子人, 张敏, 靳刚, 等. 中国空间引力波探测"太极计划"及"太极1号"在轨测试[J]. 深空探测学报, 2020, 7(1): 3-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SKTC202001001.htm

    Luo Z R, Zhang M, Jin G, et al. Introduction of Chinese space-borne gravitational wave detection program ″Taiji″ and ″Taiji-1″ satellite mission[J]. Journal of Deep Space Exploration, 2020, 7(1): 3-10 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SKTC202001001.htm

    [43]

    Pu Y X, Li X D, Wu C C, et al. Numerical simulation and experimental research of LRIT-30 radio frequency ion thruster[J]. AIP Advances, 2021, 11(5): 055313.

    [44]

    Shchepetilov V A. Development of electrojet engines at the Kurchatov institute of atomic energy[J]. Physics of Atomic Nuclei, 2018, 81(7): 988-999.

    [45]

    Hruby V. Review of electric propulsion activities in the U.S. industry[R]. AIAA 2003-4441, 2003.

    [46]

    Kanaoka K, Fujita R, Ono K, et al. Research and development of a high-power electrothermal pulsed plasma thruster systems onboard Osaka institute of technology 2nd PROITERES nano-satellite[R]. AIAA 2016-4844, 2016.

    [47]

    Tran Q V, Lim W S, Bui T D V. Development of a dual-axis pulsed plasma thruster for nano-satellite applications[J]. Journal of Small Satellites, 2019, 8(2): 837-847.

    [48]

    Scharlemann C, Seifert B, SchnitzerR, et al. PEGASUS-a review of in-orbit operation and obtained results[C]. 69th International Astronautical Congress. Bremen, 2018.

    [49]

    王尚民, 田立成, 张天平, 等. 基于12U标准立方体星的μ-PPT电推进系统研制[J]. 推进技术, 2018, 39(12): 2863-2872. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201812028.htm

    Wang S M, Tian L C, Zhang T P, et al. μ-PPT electro-propulsion system development for 12U standard cubic satellites[J]. Journal of Propulsion Technology, 2018, 39(12): 2863-2872 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201812028.htm

    [50]

    田立成, 王尚民, 高俊, 等. 微电推进系统研制及应用现状[J]. 真空, 2021, 58(2): 66-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK202102014.htm

    Tian L C, Wang S M, Gao J, et al. Development and application of micro-electric propulsion system[J]. Vacuum, 2021, 58(2): 66-75 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK202102014.htm

    [51]

    杨乐. 脉冲等离子体推力器工作过程理论和实验研究[D]. 长沙: 国防科学技术大学, 2007.

    Yang L. Theoretical and experimental study of pulsed plasma thruster operation process[D]. Changsha: Natio-nal University of Defense Technology, 2007 (in Chinese).

    [52]

    戎锡锋. 脉冲等离子体推力器性能实验研究[D]. 北京: 北京理工大学, 2016.

    Rong X F. Experimental study on the performance of pulse plasma thruster[D]. Beijing: Beijing Institute of Technology, 2016 (in Chinese).

    [53]

    Zolotukhin D B, Keidar M. Optimization of discharge triggering in micro-cathode vacuum arc thruster for CubeSats[J]. Plasma Sources Science and Technology, 2018, 27(7): 074001.

    [54]

    Kramer A. Integration and testing of vacuum arc thrusters for the university Würzburg experimental satellite (UWE-4)[D]. University Würzburg, 2015.

    [55]

    Aheieva K, Fuchikami S, Nakamoto M, et al. Develop-ment of a direct drive vacuum arc thruster passively ignited for nanosatellite[J]. IEEE Transactions on Plasma Science, 2016, 44(1): 100-106.

    [56]

    田恺, 任亮, 吴先明, 等. LVAT-1微推进系统及其在皮/纳卫星上的典型应用[J]. 真空与低温, 2019, 25(1): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW201901011.htm

    Tian K, Ren L, Wu X M, et al. LVAT-1 micro-propul-sion system and its typical applications for Pico/nano satellite[J]. Vacuum and Cryogenics, 2019, 25(1): 46-51 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW201901011.htm

    [57]

    吴先明, 张天平, 任亮, 等. 真空弧推力器技术研究[J]. 真空与低温, 2017, 23(6): 331-335. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW201706006.htm

    Wu X M, Zhang T P, Ren L, et al. Study on vacuum arc thruster technology[J]. Vacuum and Cryogenics, 2017, 23(6): 331-335 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW201706006.htm

    [58]

    黄文栋, 耿金越, 严浩, 等. 微阴极真空电弧点火起弧及加速机理研究综述[J]. 空间控制技术与应用, 2021, 47(4): 10-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KJKZ202104002.htm

    Huang W D, Geng J Y, Yan H, et al. Review on ignition and acceleration mechanisms in a micro-cathode arc thruster[J]. Aerospace Control and Application, 2021, 47(4): 10-20 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJKZ202104002.htm

    [59]

    赵杨, 邓永锋, 魏建国, 等. 瓦级脉冲微弧推进技术研究[C]. 第十四届中国电推进学术研讨会论文集. 长沙: 中国宇航学会电推进技术专业委员会, 2018.

    Zhao Y, Deng Y F, Wei J G, et al. Research on Watt-level pulsed micro-arc propulsion technology[C]. Proceedings of the 14th China Electric Propulsion Confer-ence. Changsha: Committee of Electric Propulsion Technology, Chinese Society of Astronautics, 2018 (in Chinese).

    [60]

    Tajmar M, Vasiljevich I, Grienauer W, et al. REPRINT OF: High current liquid metal ion source using porous tungsten multiemitters[J]. Ultramicroscopy, 2011, 111(6): 431-434.

    [61]

    Bramanti C, Izzo D, Samaraee T, et al. Very high Delta-V missions to the edge of the solar system and beyond enabled by the dual-stage 4-grid ion thruster concept[J]. Acta Astronautica, 2009, 64(7/8): 735-744. http://www.onacademic.com/detail/journal_1000034047765810_1864.html

    [62]

    Bramanti C, Walker R, Sutherland O, et al. The innovative dual-stage 4-grid ion thruster concept-theory and experimental results[R]. IAC-06-C4.4.7, 2006.

    [63]

    Jia L J, Yang L, Zhao Y, et al. An experimental study of a dual-stage 4-grid ion thruster[J]. Plasma Sources Science and Technology, 2021, 28(10): 105003.

    [64]

    Jorns B A, Gallimore A D. Update on the nested Hall thruster subsystem for the NextSTEP XR-100 program[R]. AIAA 2018-4418, 2018.

    [65]

    Kamhawi H, Haag T W, Jacobson D T, et al. Perfor-mance evaluation of the NASA-300 M 20 kW hall effect thruster[R]. AIAA 2011-5521, 2011.

    [66]

    孙新锋, 温晓东, 张天平. 高功率等离子体电推进技术研究进展[J]. 真空与低温, 2017, 23(6): 311-317. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW201706002.htm

    Sun X F, Wen X D, Zhang T P. The study of high power plasma electric prpulsion technology[J]. Vacuum and Cryogenics, 2017, 23(6): 311-317 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW201706002.htm

    [67]

    Sercel C L, Gill T M, Woods J M, et al. Performance measurements of a 5 kW-class rotating magnetic field thruster[R]. AIAA 2021-3384, 2021.

    [68]

    Polzin K, Martin A, Little J, et al. State-of-the-art and advancement paths for inductive pulsed plasma thrusters[J]. Aerospace, 2020, 7(8): 105.

    [69]

    Lev D. Investigation of efficiency in applied field magneto plasma dynamicthrusters[D]. Princeton: Princeton University, 2012.

    [70]

    Polzin K A. Comprehensive review of planar pulsed inductive plasma thruster research and technology[J]. Journal of Propulsion and Power, 2011, 27(3): 513-531.

    [71]

    程谋森, 李小康, 车碧轩, 等. 感应式脉冲等离子体推力器技术综述[J]. 空间控制技术与应用, 2017, 43(5): 1-6, 21. https://www.cnki.com.cn/Article/CJFDTOTAL-KJKZ201705001.htm

    Cheng M S, Li X K, Che B X, et al. Review of technology and research on inductive pulsed plasma thruster[J]. Aerospace Control and Application, 2017, 43(5): 1-6, 21 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJKZ201705001.htm

    [72]

    孙斌, 赵杨, 魏建国, 等. 30 kW级磁等离子体发动机实验研究[C]. 第十四届中国电推进学术研讨会论文集. 哈尔滨: 中国宇航学会电推进技术专业委员会, 2016.

    Sun B, Zhao Y, Wei J G, et al. Experimental study on 30 kW magnetic plasma engine[C]. Proceedings of the 14th China Electric Propulsion Conference. Harbin: Committee of Electric Propulsion Technology, Chinese Society of Astronautics, 2016 (in Chinese).

    [73]

    Ziemba T, Carscadden J, Slough J, et al. High power helicon thruster[R]. AIAA 2005-4119, 2005.

    [74]

    TA 2: In-space propulsion technologies[R]. USA: NASA Technology Roadmaps, 2015.

  • 加载中

(23)

(5)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-03-03
修回日期:  2022-03-10
刊出日期:  2023-01-20

目录