高级检索

90°锥头弹丸不同速度下垂直入水冲击引起的空泡特性

黄振贵, 王瑞琦, 陈志华, 侯宇, 罗驭川. 90°锥头弹丸不同速度下垂直入水冲击引起的空泡特性[J]. 爆炸与冲击, 2018, 38(6): 1189-1199. doi: 10.11883/bzycj-2018-0115
引用本文: 黄振贵, 王瑞琦, 陈志华, 侯宇, 罗驭川. 90°锥头弹丸不同速度下垂直入水冲击引起的空泡特性[J]. 爆炸与冲击, 2018, 38(6): 1189-1199. doi: 10.11883/bzycj-2018-0115
Zhengui HUANG, Ruiqi WANG, Zhihua CHEN, Yu HOU, Yuchuan LUO. Experimental study of cavity characteristic induced by vertical water entry impact of a projectile with a 90° cone-shaped head at different velocities[J]. Explosion And Shock Waves, 2018, 38(6): 1189-1199. doi: 10.11883/bzycj-2018-0115
Citation: Zhengui HUANG, Ruiqi WANG, Zhihua CHEN, Yu HOU, Yuchuan LUO. Experimental study of cavity characteristic induced by vertical water entry impact of a projectile with a 90° cone-shaped head at different velocities[J]. Explosion And Shock Waves, 2018, 38(6): 1189-1199. doi: 10.11883/bzycj-2018-0115

90°锥头弹丸不同速度下垂直入水冲击引起的空泡特性

  • 基金项目:
    中央高校基本科研业务费专项资金(30917012101)
详细信息
    作者简介:

    黄振贵(1986-), 男, 博士, 讲师

    通讯作者: 陈志华, chenzh@njust.edu.cn
  • 中图分类号: O381

Experimental study of cavity characteristic induced by vertical water entry impact of a projectile with a 90° cone-shaped head at different velocities

More Information
    Corresponding author: Zhihua CHEN, E-mail: chenzh@njust.edu.cn
  • 用高速摄像拍摄了90°锥头弹丸低速入水的空泡形态演变过程,全面讨论了不同入水冲击速度下空泡的闭合方式及其演变过程,分析了空泡闭合时间、闭合点水深和弹头空泡长度随入水速度的变化规律以及不同水深位置空泡直径的变化规律;研究了水幕闭合和近液面空泡收缩上升所形成的射流现象及其相互耦合作用过程,探讨了空泡深闭合后其壁面波动规律。结果表明:随着入水速度的增加,空泡分别发生准静态闭合、浅闭合、深闭合和表面闭合,每种闭合方式对应的一个速度区间;弹头产生空泡的临界入水速度为0.657 m/s;不同水深位置的空泡直径呈现非线性变化;随着水深的增加空泡扩张初速增大,空泡最大直径减小,扩张段缩短,收缩段延长;同一时刻水深越大空泡扩张收缩的加速度也越高;水幕闭合后会产生向上和向下两股射流,向下射流速度较大时会对弹丸运动产生影响;近液面空泡收缩上升时会产生强度正比于空泡体积大小和闭合点水深的射流,并与上两股射流相互耦合形成一股更强的向上射流;空泡深闭合后长度缩短和产生的向下射流使弹丸受力发生改变,弹丸速度因受力产生的变化带动了流体质点速度的波动,进而导致空泡壁面发生波动,壁面波动遵循空泡截面独立扩张原理。

  • 加载中
  • 图 1  实验装置示意图

    Figure 1.  Schematic diagram of experimental setup

    图 2  90°锥头弹丸尺寸图

    Figure 2.  Dimensions of 90° cone-shaped head projectile

    图 3  准静态闭合空泡(u0=0.44 m/s)

    Figure 3.  Quasi-static seal impact cavity (u0=0.44 m/s, )

    图 4  浅闭合空泡(u0=1.36 m/s)

    Figure 4.  Shallow seal impact cavity (u0=1.36 m/s)

    图 5  深闭合空泡(u0=2.80 m/s)

    Figure 5.  Deep seal impact cavity (u0=2.80 m/s)

    图 6  表面闭合空泡(u0=3.98 m/s)

    Figure 6.  Surface seal impact cavity (u0=3.98 m/s)

    图 7  弹头空泡长度随入水速度u0的变化

    Figure 7.  Change of the cavity length of warhead with the initial velocity (u0)

    图 8  不同入水速度(u0)情况下弹头空泡

    Figure 8.  Cavities of warhead at different initial velocities (u0)

    图 9  空泡闭合时间(tp)和闭合点水深(Hp)随入水速度(u0)的变化

    Figure 9.  Change of cavity closing time (tp) and closing depth (Hp) with initial velocity (u0)

    图 10  空泡闭合点水深(Hp)、空泡总长度(La)和两者之比(Hp/La)随入水速度u0的变化

    Figure 10.  Change of cavity closing depth (Hp), cavity length (La) and their ratio (Hp/La) with initial velocity (u0)

    图 11  不同水深(Hf)处空泡直径(Dc)变化

    Figure 11.  Change of cavity diameter (Dc) at different depths (Hf)

    图 12  不同水深位置空泡径向速度

    Figure 12.  Radial velocity of cavities at different underwater depths

    图 13  不同水深位置空泡径向加速度曲线

    Figure 13.  Radial acceleration of cavities at different underwater depths

    图 14  空泡形态、水幕和射流图(u0=3.33 m/s)

    Figure 14.  Cavity, water curtain and jet (u0=3.33 m/s)

    图 15  射流对弹丸及空泡的影响(u0=4.20 m/s)

    Figure 15.  Effect of jets on projectile and cavity (u0=4.20 m/s)

    图 16  惯性参考系中空泡的壁面波动(u0=2.80 m/s)

    Figure 16.  Fluctuation of the cavity wall in static coordinate(u0=2.80 m/s)

    图 17  弹体坐标系中空泡的壁面波动(u0=2.80 m/s)

    Figure 17.  Fluctuation of the cavity wall in the body coordinate (u0=2.80 m/s)

    图 18  空泡波动阶段弹丸速度随时间的变化

    Figure 18.  Change of projectile velocity with time at the stage of cavity fluctuation

    图 19  两种速度情况下的空泡波动图

    Figure 19.  Fluctuation of the cavity at two initial projectile velocities

    表 1  不同水深位置空泡特性参数

    Table 1.  Characteristic parameters of cavity at different underwater depths

    Hf/mm tr/ms tm/ms ta/ms Te/ms Ts/ms Dm/mm
    3.5 2.7 63.0 82.0 60.3 19.0 32.0
    20 8.3 42.0 61.3 33.7 19.3 21.5
    40 14.7 28.0 50.3 13.3 22.3 16.5
    59 22.0 31.5 48.7 9.5 17.2 15.0
    下载: 导出CSV
  • [1]

    YAN H M, LIU Y M, KOMINIARCZUK J, et al. Cavity dynamics in water entry at low Froude numbers[J]. Journal of Fluid Mechanics, 2009, 641:441-461. DOI:10.1017/S0022112009991558.

    [2]

    ARISTOFF J M, TRUSCOTT T T, TECHET A H, et al. The water entry of decelerating spheres[J]. Physics of Fluids, 2010, 22(3):032102(1)-032102(8). DOI:10.1063/1.3309454.

    [3]

    ARISTOFF J M, BUSH J W M. Water entry of small hydrophobic spheres[J]. Journal of Fluid Mechanics, 2009, 619:45-78. DOI:10.1017/S0022112008004382.

    [4]

    马庆鹏, 何春涛, 王聪, 等.球体垂直入水空泡实验研究[J].爆炸与冲击, 2014, 34(2):174-180. DOI:10.11883/1001-1455(2014)02-0174-07. http://www.bzycj.cn/CN/abstract/abstract8706.shtml

    MA Qingpeng, HE Chuntao, WANG Cong, et al. Experimental investigation on vertical water-entry cavity of sphere[J]. Explosion and Shock Waves, 2014, 34(2):174-180. DOI:10.11883/1001-1455(2014)02-0174-07. http://www.bzycj.cn/CN/abstract/abstract8706.shtml

    [5]

    BERGMANN R, MEER D V D, GEKLE S, et al. Controlled impact of disk on a water surface:cavity dynamics[J]. Journal of Fluid Mechanics, 2009, 633:1-34. DOI:10.1017/S0022112009006983.

    [6]

    蒋运华, 徐胜利, 周杰.圆盘空化器航行体入水空泡实验研究[J].工程力学, 2017, 34(3):241-246. DOI:10.6052/j.issn.1000-4750.2015.09.0726.

    JIANG Yunhua, XU Shengli, ZHOU Jie. Water entry experiment of a cylindrical vehicle with disc cavitator[J]. Engineering Mechanics, 2017, 34(3):241-246. DOI:10.6052/j.issn.1000-4750.2015.09.0726.

    [7]

    YAO E R, WANG H R, PAN L, et al. Vertical water-entry of bullet-shaped projectiles[J]. Journal of Applied Mathematics and Physics, 2014, 2:323-334. DOI:10.4236/jamp.2014.26039.

    [8]

    杨衡, 张阿漫, 龚小超, 等.不同头型弹体低速入水空泡试验研究[J].哈尔滨工程大学学报, 2014, 35(9):1060-1067. DOI:10.3969/j.issn.1006-7043.201304035.

    YANG Heng, ZHANG Aman, GONG Xiaochao, et al. Experimental study of the cavity of low speed water entry of different head shape projectiles[J]. Journal of Harbin Engineering University, 2014, 35(9):1060-1067. DOI:10.3969/j.issn.1006-7043.201304035.

    [9]

    何春涛, 王聪, 魏英杰, 等.圆柱体垂直入水空泡形态试验[J].北京航空航天大学学报, 2012, 38(11):1542-1546. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205748643

    HE Chuntao, WANG Cong, WEI Yingjie, et al. Vertical water entry cavity of cylinder body[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(11):1542-1546. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205748643

    [10]

    何春涛, 王聪, 何乾坤, 等.圆柱体低速入水空泡试验研究[J].物理学报, 2012, 61(13):281-289. DOI:10.7498/aps.61.134701.

    HE Chuntao, WANG Cong, HE Quankun, et al. Low speed water-entry of cylindrical projectile[J]. Acta Physica Sinica, 2012, 61(13):281-289. DOI:10.7498/aps.61.134701.

    [11]

    施红辉, 胡青青, 陈波, 等.钝体倾斜和垂直冲击入水时引起的超空泡流动特性实验研究[J].爆炸与冲击, 2015, 35(5):617-624. DOI:10.11883/1001-1455(2015)05-0617-08. http://www.bzycj.cn/CN/abstract/abstract9509.shtml

    SHI Honghui, HU Qingqing, CHEN Bo, et al. Experimental study of supercavitating flows induced by oblique and vertical water entry of blunt bodies[J]. Explosion and Shock Waves, 2015, 35(5):617-624. DOI:10.11883/1001-1455(2015)05-0617-08. http://www.bzycj.cn/CN/abstract/abstract9509.shtml

    [12]

    TRUSCOTT T T, EPPS B P, BELDEN J. Water entry of projectiles[J]. Annual Review of Fluid Mechanics, 2013, 46:355-378. DOI:10.1146/annurev-fluid-011212-140753.

    [13]

    王永虎, 石秀华.入水冲击问题研究的现状与进展[J].爆炸与冲击, 2008, 28(3):276-282. DOI:10.11883/1001-1455(2008)03-0276-07. http://www.bzycj.cn/CN/abstract/abstract9042.shtml

    WANG Yonghu, SHI Xiuhua. Review on research and development of water-entry impact problem[J]. Explosion and Shock Waves, 2008, 28(3):276-282. DOI:10.11883/1001-1455(2008)03-0276-07. http://www.bzycj.cn/CN/abstract/abstract9042.shtml

  • 加载中

(19)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2018-04-08
修回日期:  2018-05-03
刊出日期:  2018-11-25

目录